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Statistics

Testing independence is a fundamental statistical problem that has received much attention

in literature. In this dissertation, we consider testing independence under two different

settings. The first is testing mutual independence of many covariates, and the second is

testing independence of two random vectors. For both settings, we propose, for the first

time, distribution-free and consistent tests of independence via marginal or multivariate

ranks. Moreover, we establish the optimal efficiency in the statistical sense of both tests.

In addition, we also investigate the power of a simple consistent rank correlation coefficient

recently proposed by Chatterjee (2021) against local alternatives. Our results show that

Chatterjee’s coefficient is unfortunately statistically inefficient.
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Chapter 1

INTRODUCTION

Rank correlations have found many innovative applications in the last decade. In par-

ticular, suitable rank correlations have been used for consistent tests of independence. In

this dissertation, we consider testing independence via marginal and multivariate ranks un-

der two different settings. We will study testing mutual independence for high-dimensional

observations in Chapter 2, and move on to the problem of testing independence between two

random vectors/variables in Chapters 3 and 4.

Chapter 2 is concerned with testing mutual independence among all entries in a random

vector based on finite observations. Popular tests based on linear and simple rank correlations

are known to be incapable of detecting non-linear, non-monotone relationships, calling for

methods that can account for such dependences. To address this challenge, we propose a

family of tests that are constructed using maxima of pairwise rank correlations that permit

consistent assessment of pairwise independence. Built upon a newly developed Cramér-

type moderate deviation theorem for degenerate U-statistics, our results cover a variety

of rank correlations including Hoeffding’s D, Blum–Kiefer–Rosenblatt’s R, and Bergsma–

Dassios–Yanagimoto’s τ ∗. The proposed tests are distribution-free in the class of multivariate

distributions with continuous margins, implementable without the need for permutation, and

are shown to be rate-optimal against sparse alternatives under the Gaussian copula model.

As a by-product of the study, we reveal an identity between the aforementioned three rank

correlation statistics, and hence make a step towards proving a conjecture of Bergsma and

Dassios.
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In Chapter 3, we consider testing independence between two random vectors. When it

reduces to the univariate case (both random vectors are in dimension one), using ranks is

especially appealing for continuous data as tests become distribution-free. However, the tra-

ditional concept of ranks relies on ordering data and is, thus, tied to univariate observations.

As a result, it has long remained unclear how one may construct distribution-free yet consis-

tent tests of independence between random vectors. In this chapter, we address this problem

by laying out a general framework for designing dependence measures that give tests of mul-

tivariate independence that are not only consistent and distribution-free but which we also

prove to be statistically efficient. Our framework leverages the recently introduced concept

of center-outward ranks and signs, a multivariate generalization of traditional ranks, and

adopts a common standard form for dependence measures that encompasses many popular

examples. In a unified study, we derive a general asymptotic representation of center-outward

rank-based test statistics under independence, extending to the multivariate setting the clas-

sical Hájek asymptotic representation results. This representation permits direct calculation

of limiting null distributions and facilitates a local power analysis that provides strong sup-

port for the center-outward approach by establishing, for the first time, the nontrivial power

of center-outward rank-based tests over root-n neighborhoods within the class of quadratic

mean differentiable alternatives.

In Chapter 4, we focus on the problem of testing independence between two univariate

random variables. Chatterjee (2021) introduced a simple new rank correlation coefficient

that has attracted much recent attention. The coefficient has the unusual appeal that it not

only estimates a population quantity first proposed by Dette et al. (2013) that is zero if and

only if the underlying pair of random variables is independent, but also is asymptotically

normal under independence. This chapter compares Chatterjee’s new correlation coefficient

to three established rank correlations that also facilitate consistent tests of independence,

namely, Hoeffding’s D, Blum–Kiefer–Rosenblatt’s R, and Bergsma–Dassios–Yanagimoto’s
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τ ∗. We contrast their computational efficiency in light of recent advances, and investigate

their power against local rotation and mixture alternatives. Our main results show that

Chatterjee’s coefficient is unfortunately rate sub-optimal compared to D, R, and τ ∗. The

situation is more subtle for a related earlier estimator of Dette et al. (2013). These results

favor D, R, and τ ∗ over Chatterjee’s new correlation coefficient for the purpose of testing

independence.

The main contents of this thesis are taken from the following articles and manuscripts

with minor modification. Chapter 2 is adapted from “High-dimensional consistent indepen-

dence testing with maxima of rank correlations”, coauthored with Mathias Drton and Fang

Han, published on The Annals of Statistics (Drton et al., 2020). Chapter 3 is drawn from

“On universally consistent and fully distribution-free rank tests of vector independence”,

coauthored with Marc Hallin, Mathias Drton and Fang Han (Shi et al., 2020); it extends

an earlier paper “Distribution-free consistent independence tests via center-outward ranks

and signs”, coauthored with Mathias Drton and Fang Han, accepted to the Journal of the

American Statistical Association (Shi et al., 2021a). The last chapter is from “On the power

of Chatterjee’s rank correlation” coauthored with Mathias Drton and Fang Han, accepted to

Biometrika (Shi et al., 2021b).
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Chapter 2

HIGH-DIMENSIONAL CONSISTENT INDEPENDENCE
TESTING WITH MAXIMA OF RANK CORRELATIONS

2.1 Introduction

Let X = (X1, . . . , Xp)
> be a random vector taking values in Rp and having all univariate

marginal distributions continuous. This paper is concerned with testing the null hypothesis

H0 : X1, . . . , Xp are mutually independent, (2.1.1)

based on n independent realizations X1, . . . ,Xn of X. Testing H0 is a core problem in

multivariate statistics that has attracted the attention of statisticians for decades; see e.g.

the exposition in Anderson (2003, Chap. 9) or Muirhead (1982, Chap. 11). Traditional

methods such as the likelihood ratio test, Roy’s largest root test (Roy, 1957), and Nagao’s

L2-type test (Nagao, 1973) target the case where the dimension p is small and perform

poorly when p is comparable to or even larger than n. A line of recent work seeks to address

this issue and develops tests that are suitable for modern applications involving data with

large dimension p. This high-dimensional regime is in the focus of our work, which develops

distribution theory based on asymptotic regimes where p = pn increases to infinity with n.

Many tests of independence in high dimensions have been proposed recently. For example,

Bai et al. (2009) and Jiang and Yang (2013) derived corrected likelihood ratio tests for

Gaussian data. Using covariance/correlation statistics such as Pearson’s r, Spearman’s ρ,

and Kendall’s τ , Bao et al. (2012), Gao et al. (2017), Han et al. (2018), and Bao (2019)

proposed revised versions of Roy’s largest root test. Schott (2005) and Leung and Drton
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(2018) derived corrected Nagao’s L2-type tests. Finally, Jiang (2004), Zhou (2007), and Han

et al. (2017) proposed tests using the magnitude of the largest pairwise correlation statistics.

Subsequently we shall refer to tests of this latter type as maximum-type tests.

The aforementioned approaches are largely built on linear and simple rank correlations.

These, however, are incapable of detecting more complicated non-linear, non-monotone de-

pendences as Hoeffding (1948) noted in his seminal paper. Recent work thus proposed the use

of consistent rank (Bergsma and Dassios, 2014), kernel-based (Gretton et al., 2008; Pfister

et al., 2018), and distance covariance/correlation statistics (Székely et al., 2007). However,

much less is known about high-dimensional tests of H0 that use these more involved statis-

tics. Notable exceptions include Leung and Drton (2018) and Yao et al. (2018). There,

the authors combined Nagao’s L2-type methods with rank and distance covariance statistics

that in a tour de force are shown to weakly converge to a Gaussian limit under the null.

In addition, Yao et al. (2018) proved that an infeasible version of their test is rate-optimal

against a Gaussian dense alternative (Gaussian distribution with equal correlation), while

still little is known about optimality of Leung and Drton’s.

In this paper, we derive maximum-type tests that are counterparts of Leung–Drton and

Yao–Zhang–Shao L2-type ones. As noted in Han et al. (2017), Leung and Drton (2018),

and Yao et al. (2018), maximum-type tests will be more sensitive to strong but sparse

dependence. Designed to assess pairwise independence consistently, our tests are formed

using statistics based on pairwise rank correlation measures such as Hoeffding’sD (Hoeffding,

1948), Blum–Kiefer–Rosenblatt’s R (Blum et al., 1961), and Bergsma–Dassios–Yanagimoto’s

τ ∗ (Bergsma and Dassios, 2014; Yanagimoto, 1970). In particular, assuming the pair of

random variables Xi and Xj to have a joint distribution that is not only continuous but

also absolutely continuous, these measures all satisfy the following three desirable properties

summarized in Weihs et al. (2018):

I-consistency. If Xi and Xj are independent, the correlation measure is zero.
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D-consistency. If Xi and Xj are dependent, the correlation measure is nonzero.

Monotonic invariance. The correlation measure is invariant to monotone transforma-

tions.

We remark that invariance under invertible (and not just monotonic) transformations

was considered in work on self-equitable measures of dependence (Kinney and Atwal, 2014).

This leads to notions of mutual information whose estimates are different from and usually

more challenging to handle than the rank correlation measures we consider here; see Berrett

and Samworth (2019) and references therein. Indeed, as we shall review in Section 2.2, the

aforementioned correlation measures are naturally estimated via U-statistics, which despite

being degenerate have important special properties.

The contributions of our work are threefold. First, we prove that all the maximum-type

test statistics proposed in Section 2.3 have a null distribution that converges to a (non-

standard) Gumbel distribution under high-dimensional asymptotics. This is in contrast to

the results in Han et al. (2017), where those rank correlation measures that permit consistent

assessment of pairwise independence are excluded from the analysis. This exclusion is due to

the lack of necessary probability tools like Cramér-type moderate deviation bounds for degen-

erate U-statistics, which are newly developed in this paper. Additionally, no distributional

assumption except for marginal continuity is required for this result, and the parameters for

the Gumbel limit can be explicitly given. This allows one to avoid permutation analysis in

problems of larger scale. Second, we conduct a power analysis and give explicit conditions on

a sparse local alternative under which our proposed tests have power tending to one. Third,

we show that the maximum-type tests based on Hoeffding’s D, Blum–Kiefer–Rosenblatt’s R,

and Bergsma–Dassios–Yanagimoto’s τ ∗ are all rate-optimal in the class of Gaussian (copula)

distributions with sparse and strong dependence as characterized in the power analysis. To

our knowledge this is the first rate-optimality result for a feasible test that permits con-

sistent assessment of pairwise independence. These results are developed in Section 2.4.
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The theoretical advantages of our tests are highlighted in simulation studies (Section 2.5).

Lastly, we note that, as an interesting by-product of the study, we give an identity among the

above three statistics that helps make a step towards proving Bergsma–Dassios’s conjecture

about general D-consistency of τ ∗. This observation, along with other discussions, is given

in Section 2.6. All proofs and additional simulation results are deferred to a supplement.

Notation The sets of real, integer, and positive integer numbers are denoted R, Z, and

Z+, respectively. The cardinality of a set A is written #A. For m ∈ Z+, we define JmK =

{1, 2, . . . ,m} and write Pm for the set of all m! permutations of JmK. Let M = [Mjk] ∈ Rp×p,

and I, J be two subsets of JpK. Then both MI,J and M[I, J ] are used to refer to the sub-

matrix of M with rows indexed by I and columns indexed by J . The matrix diag(M) ∈ Rp×p

is the diagonal matrix whose diagonal is the same as that of M. We write Ip and Jp for the

identity matrix and all-ones matrix in Rp×p, respectively. For a function f : X → R, we

define ‖f‖∞ := maxx∈X |f(x)|. The greatest integer less than or equal to x ∈ R is denoted

by bxc. The symbol 1(·) is used for indicator functions. For any two real sequences {an} and

{bn}, we write an . bn, an = O(bn), or equivalently bn & an, if there exists C > 0 such that

|an| ≤ C|bn| for any large enough n. We write an � bn if both an . bn and an & bn hold.

Write an = o(bn) if for any c > 0, |an| ≤ c|bn| holds for any large enough n. Throughout, c

and C refer to positive absolute constants whose values may differ from line to line.

2.2 Rank correlations and degenerate U-statistics

This section introduces the pairwise rank correlations that will later be aggregated in a

maximum-type test of the independence hypothesis in (2.1.1). We present these correlations

in a general U-statistic framework. In the sequel, unless otherwise stated, the random vector

X is assumed to have continuous margins, that is, its marginal distributions are continuous,

though not necessarily absolutely continuous.
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LetX1, . . . ,Xn be independent copies ofX = (X1, . . . , Xp)
>, withXi = (X1i, . . . , Xpi)

>.

Let j 6= k ∈ JpK, and let h : (R2)m → R be a fixed kernel of order m. The kernel h defines a

U-statistic of order m:

Ûjk =

(
n

m

)−1 ∑
1≤i1<i2<···<im≤n

h

{(
Xji1

Xki1

)
, . . . ,

(
Xjim

Xkim

)}
. (2.2.1)

For our purposes, the kernel h may always be assumed to be symmetric, i.e., h(z1, . . . ,zm) =

h(zσ(1), . . . ,zσ(m)) for all permutations σ ∈ Pm and z1, . . . ,zm ∈ R2. Letting zi = (z1i, z2i)
>,

if both vectors (z11, . . . , z1m) and (z21, . . . , z2m) are free of ties, i.e., have marginal distinct

entries, then we have well-defined vectors of ranks (r11, . . . , r1m) and (r21, . . . , r2m), and we

define ri = (r1i, r2i)
> for 1 ≤ i ≤ n. Now a kernel is rank-based if

h(z1, . . . ,zm) = h(r1, . . . , rm)

for all z1, . . . ,zm ∈ R2 with (z11, . . . , z1m) and (z21, . . . , z2m) free of ties. In this case, we also

say that the “correlation” statistic Ûjk as well as the corresponding “correlation measure”

EÛjk is rank-based.

Rank-based statistics have many appealing properties with regard to independence. The

following three will be of particular importance for us. Proofs can be found in, e.g., Chap-

ter 31 in Kendall and Stuart (1979), Lemma C4 in the supplement of Han et al. (2017), and

Lemma 2.1 in Leung and Drton (2018). We also note that, in finite samples, the statistics

{Ûjk; j < k} are generally not mutually independent.

Proposition 2.2.1. Under the null hypothesis in (2.1.1) and assuming continuous margins,

we have:

(i) The rank statistics {Ûjk, j 6= k} are all identically distributed and are distribution-free,

i.e., the distribution of Ûjk does not depend on the marginal distributions of X1, . . . , Xp;

(ii) Fix any j ∈ JpK, then the rank statistics {Ûjk, k 6= j}, are mutually independent;
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(iii) For any j 6= k ∈ JpK, the rank statistic Ûjk is independent of {Ûj′k′ ; j′, k′ 6∈ {j, k}, j′ 6=

k′}.

Our focus will be on those rank-based correlation statistics and the corresponding mea-

sures that are induced by the kernel h(·) and are both I- and D-consistent. The kernels of

these measures satisfy important additional properties that we will assume in our general

treatment. Further concepts concerning U-statistics are needed to state this assumption.

For any kernel h(·), any number ` ∈ JmK, and any measure PZ , we write

h`(z1 . . . , z`; PZ) := Eh(z1 . . . , z`,Z`+1, . . . ,Zm)

and

h(`)(z1, . . . ,z`; PZ)

:= h`(z1, . . . ,z`; PZ)− Eh−
`−1∑
k=1

∑
1≤i1<···<ik≤`

h(k)(zi1 , . . . ,zik ; PZ), (2.2.2)

where Z1, . . . ,Zm are m independent random vectors with distribution PZ and Eh :=

Eh(Z1, . . . ,Zm). The kernel as well as the corresponding U-statistic is degenerate under

PZ if h1(·) has variance zero. We use the term completely degenerate to indicate that the

variances of h1(·), . . . , hm−1(·) are all zero. Finally, let P0 be the uniform distribution on

[0, 1], and write P0 ⊗ P0 for its product measure, the uniform distribution on [0, 1]2. Note

that by Proposition 2.2.1(i), the study of Ûjk under independent continuous margins Xj and

Xk can be reduced to the case with (Xj, Xk)
> ∼ P0 ⊗ P0.

Assumption 2.2.1. The kernel h is rank-based, symmetric, and has the following three

properties:

(i) h is bounded.
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(ii) h is mean-zero and degenerate under independent continuous margins, i.e., E{h1(Z1;

P0 ⊗ P0)}2 = 0 as Z1 ∼ P0 ⊗ P0.

(iii) h2(z1, z2; P0 ⊗ P0) has uniformly bounded eigenfunctions, that is, it admits the expan-

sion

h2(z1, z2; P0 ⊗ P0) =
∞∑
v=1

λvφv(z1)φv(z2),

where {λv} and {φv} are the eigenvalues and eigenfunctions satisfying the integral

equation

Eh2(z1,Z2)φ(Z2) = λφ(z1) for all z1 ∈ R2,

with Z2 ∼ P0 ⊗ P0, λ1 ≥ λ2 ≥ · · · ≥ 0, Λ :=
∑∞

v=1 λv ∈ (0,∞), and supv‖φv‖∞ <∞.

The first boundedness property is satisfied for the commonly used rank correlations,

including Kendall’s τ , Spearman’s ρ, and many others. The latter two properties are much

more specific, but exhibited by the classical rank correlation measures for which consistency

properties are known. We discuss the main examples below. Note also that the assumption

Λ > 0 implies λ1 > 0, so that h2(·) is not a constant function.

Example 2.2.1 (Hoeffding’s D). Letting zi = (z1i, z2i)
>, from the symmetric kernel

hD(z1, . . . ,z5) :=
1

16

∑
(i1,...,i5)∈P5[{

1(z1i1 ≤ z1i5)− 1(z1i2 ≤ z1i5)
}{

1(z1i3 ≤ z1i5)− 1(z1i4 ≤ z1i5)
}]

[{
1(z2i1 ≤ z2i5)− 1(z2i2 ≤ z2i5)

}{
1(z2i3 ≤ z2i5)− 1(z2i4 ≤ z2i5)

}]
,

we recover Hoeffding’s D statistic, which is a rank-based U-statistic of order 5 and gives

rise to the Hoeffding’s D correlation measure EhD. The kernel hD(·) satisfies the first two

properties in Assumption 2.2.1 in view of the results in Hoeffding (1948). To verify the last
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property, we note that under the measure P0 ⊗ P0, hD,2(·) is known to have eigenvalues

λi,j;D = 3/(π4i2j2), i, j ∈ Z+;

see, e.g., Proposition 7 in Weihs et al. (2018) or Theorem 4.4 in Nandy et al. (2016). The

corresponding eigenfunctions are

φi,j;D{(z11, z21)>} = 2 cos(πiz11) cos(πjz21), i, j ∈ Z+.

The eigenvalues are positive and sum to ΛD :=
∑

i,j λi,j;D = 1/12, and supi,j‖φi,j;D‖∞ ≤

2. For any pair of random variables, the correlation measure EhD ≥ 0 (Hoeffding, 1948,

p. 547). Furthermore, it has been proven that, once the pair is absolutely continuous in

R
2, the correlation measure EhD = 0 if and only if the pair is independent (Hoeffding, 1948;

Yanagimoto, 1970). This property, however, generally does not hold for discrete data or data

generated from a bivariate distribution that is continuous but not absolutely continuous; see

Remark 1 in Yanagimoto (1970) for a counterexample.

Example 2.2.2 (Blum–Kiefer–Rosenblatt’s R). The symmetric kernel

hR(z1, . . . ,z6) :=
1

32

∑
(i1,...,i6)∈P6[{

1(z1i1 ≤ z1i5)− 1(z1i2 ≤ z1i5)
}{

1(z1i3 ≤ z1i5)− 1(z1i4 ≤ z1i5)
}]

[{
1(z2i1 ≤ z2i6)− 1(z2i2 ≤ z2i6)

}{
1(z2i3 ≤ z2i6)− 1(z2i4 ≤ z2i6)

}]
yields Blum–Kiefer–Rosenblatt’s R statistic (Blum et al., 1961), which is a rank-based U-

statistic of order 6. One can verify the three properties in Assumption 2.2.1 similarly to

Hoeffding’s D by using that hR,2 = 2hD,2. In addition, for any pair of random variables, the

correlation measure EhR ≥ 0 with equality if and only if the pair is independent, and no

continuity assumption is needed at all; cf. page 490 of Blum et al. (1961).
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Example 2.2.3 (Bergsma–Dassios–Yanagimoto’s τ ∗). Bergsma and Dassios (2014) intro-

duced a rank correlation statistic as a U-statistic of order 4 with the symmetric kernel

hτ∗(z1, . . . ,z4)

:=
1

16

∑
(i1,...,i4)∈P4

{
1(z1i1 , z1i3 < z1i2 , z1i4) + 1(z1i2 , z1i4 < z1i1 , z1i3)

− 1(z1i1 , z1i4 < z1i2 , z1i3)− 1(z1i2 , z1i3 < z1i1 , z1i4)
}

{
1(z2i1 , z2i3 < z2i2 , z2i4) + 1(z2i2 , z2i4 < z2i1 , z2i3)

− 1(z2i1 , z2i4 < z2i2 , z2i3)− 1(z2i2 , z2i3 < z2i1 , z2i4)
}
.

Here, 1(y1, y2 < y3, y4) := 1(y1 < y3)1(y1 < y4)1(y2 < y3)1(y2 < y4). It holds that

hτ∗,2 = 3hD,2 and all properties in Assumption 2.2.1 also hold for hτ∗(·). Theorem 1 in

Bergsma and Dassios (2014) shows that for a pair of random variables whose distribution

is discrete, absolutely continuous, or a mixture of both, the correlation measure Ehτ∗ ≥ 0

where equality holds if and only if the variables are independent. It has been conjectured

that this fact is true for any distribution on R2. In Section 2.6.2 of this paper we make new

progress along this track. This progress is based on early but apparently little known results

of Yanagimoto (1970) that prompted us to add his name in reference to τ ∗.

2.3 Maximum-type tests of mutual independence

We now turn to tests of the mutual independence hypothesis H0 in (2.1.1). As in Han et al.

(2017), we propose maximum-type tests. However, in contrast to Han et al. (2017), we

suggest the use of consistent and rank-based correlations with the practical choices being the

ones from Examples 2.2.1–2.2.3. As these measures are all nonnegative, it is appropriate to

consider a one-sided test in which we aggregate pairwise U-statistics Ûjk in (2.2.1) into the

test statistic

M̂n := (n− 1) max
j<k

Ûjk.
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We then reject H0 if M̂n is larger than a certain threshold. Note that we tacitly assumed

Ûjk = Ûkj when maximizing over j < k; this symmetry holds for any reasonable correlation

statistic. We emphasize once more that, since the statistic is constructed based on pairs

{Xi,j, Xi,k}i∈JnK, the proposed tests are designed to assess pairwise independence consistently.

By Proposition 2.2.1(i), the statistic M̂n is distribution-free in the class of multivariate

distributions with continuous margins. An exact critical value for rejection of H0 could thus

be approximated by Monte Carlo simulation. However, as we will show, extreme-value theory

yields asymptotic critical values that avoid any extra computation all the while giving good

finite-sample control of the test’s size. When presenting this theory, we write X d
= Y if two

random variables X and Y have the same distribution, and we use d−→ to denote “weak

convergence”.

If, under H0, the studied statistic (n−1)Ûjk weakly converged to a chi-square distribution

with one degree of freedom, as in Theorems 1 and 2 of Han et al. (2017), then extreme-

value theory combined with Proposition 2.2.1 would imply that a suitably standardized

version of M̂n would weakly converge to a type-I Gumbel distribution with distribution

function exp{−(8π)−1/2 exp(−y/2)}. However, the degeneracy stated in Assumption 2.2.1(ii)

rules out this possibility. Classical theory yields that instead of a single chi-square variable,

we encounter convergence to much more involved infinite weighted series (Serfling, 1980,

Chap. 5.5.2).

Proposition 2.3.1. Let X have continuous margins, and let j 6= k. If h(·) satisfies As-

sumption 2.2.1, then under H0,(
m

2

)−1

(n− 1)Ûjk
d−→

∞∑
v=1

λv(ξ
2
v − 1),

where {ξv, v = 1, 2, . . .} are i.i.d. standard Gaussian random variables.

Note that the weak convergence result for degenerate U-statistics in Proposition 2.3.1
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holds under much weaker conditions than Assumption 2.2.1; see the main theorem in Serfling

(1980, Chap. 5.5.2) for detailed conditions. Our intuition for the asymptotic forms of the

maxima now comes from the following fact, though the analysis of maxj<k Ûjk requires more

refined techniques since {Ûjk; j < k} are in general not mutually independent.

Proposition 2.3.2. Let Y1, . . . , Yd be d = p(p−1)/2 independent copies of ζ d
=
∑∞

v=1 λv(ξ
2
v−

1). Then, as p→∞,

max
j∈JdK

Yj
λ1

− 4 log p− (µ1 − 2) log log p+
Λ

λ1

d−→ G.

Here G follows a Gumbel distribution with distribution function

exp
{
− 2µ1/2−2κ

Γ(µ1/2)
exp

(
− y

2

)}
,

where µ1 is the multiplicity of the largest eigenvalue λ1 in the sequence {λ1, λ2, . . . }, κ :=∏∞
v=µ1+1(1− λv/λ1)−1/2, and Γ(z) :=

∫∞
0
xz−1e−xdx is the gamma function.

Obviously, when setting λ1 = 1, λ2 = λ3 = · · · = 0 in Proposition 2.3.2, we recover the

Gumbel distribution derived by Han et al. (2017). Based on Propositions 2.3.1 and 2.3.2,

for any pre-specified significance level α ∈ (0, 1), our proposed test is

Tα := 1
{ n− 1

λ1

(
m
2

) max
j<k

Ûjk − 4 log p− (µ1 − 2) log log p+
Λ

λ1

> Qα

}
, (2.3.1)

where

Qα := log
2µ1−4κ2

{Γ(µ1/2)}2
− 2 log log(1− α)−1

is the 1−α quantile of the Gumbel distribution of distribution function exp{−2µ1/2−2κ/Γ(µ1/2)·

exp(−y/2)}. However, note that so far the test results merely from heuristic arguments. The-

oretical justifications regarding the test’s size and power under the high-dimensional regime

will be given in Section 2.4.
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Example 2.3.1 (“Extreme D”). Hoeffding’s D statistic introduced in Example 2.2.1 is

D̂jk :=

(
n

5

)−1 ∑
i1<···<i5

hD{(Xji1 , Xki1)
>, . . . , (Xji5 , Xki5)

>}.

According to (2.3.1), the corresponding test is

TD,α := 1
{π4(n− 1)

30
max
j<k

D̂jk − 4 log p+ log log p+
π4

36
> QD,α

}
,

where QD,α := log{κ2
D/(8π)} − 2 log log(1− α)−1 and

κD :=
{

2
∞∏
n=2

π/n

sin(π/n)

}1/2

≈ 2.467.

Example 2.3.2 (“Extreme R”). Blum–Kiefer–Rosenblatt’s R statistic from Example 2.2.2

is

R̂jk :=

(
n

6

)−1 ∑
i1<···<i6

hR{(Xji1 , Xki1)
>, . . . , (Xji6 , Xki6)

>}.

According to (2.3.1), the corresponding test is

TR,α := 1
{π4(n− 1)

90
max
j<k

R̂jk − 4 log p+ log log p+
π4

36
> QR,α

}
,

where QR,α := QD,α.

Example 2.3.3 (“Extreme τ ∗”). Bergsma–Dassios–Yanagimoto’s τ ∗ statistic from Example

2.2.3 is

τ̂ ∗jk :=

(
n

4

)−1 ∑
i1<···<i4

hτ∗{(Xji1 , Xki1)
>, . . . , (Xji4 , Xki4)

>}.

According to (2.3.1), it yields the test

Tτ∗,α := 1
{π4(n− 1)

54
max
j<k

τ̂ ∗jk − 4 log p+ log log p+
π4

36
> Qτ∗,α

}
,

where Qτ∗,α := QD,α.

Note that, by the definitions of the kernels and the identity (2.6.1) that will be introduced
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in Section 2.6.2, as long as there is no tie in the data, for any j, k ∈ JpK,

D̂jj = R̂jj = τ̂ ∗jj = 1 and 3D̂jk + 2R̂jk = 5τ̂ ∗jk. (2.3.2)

Remark 2.3.1. In applying the above tests we have intrinsically assumed that there are no

ties among the entries Xj1, . . . , Xjn for each j ∈ JpK. This is based on the assumption that

X = (X1, . . . , Xp)
> has continuous margins. In practice, however, data in finite accuracy

might feature ties or may indeed be drawn from a distribution that is not of a continuous

margin. In such cases, conducting the above tests on the original data may distort the size.

To fix this, as was discussed in Remark 2.1 in Heller et al. (2016), one may break the ties

randomly so that the above tests remain distribution-free. Also see Chapter 8 in Hollander

et al. (2014) for more discussions on how to break ties for rank-based tests.

2.4 Theoretical analysis

This section provides theoretical justifications of the tests proposed in Section 2.3. The

section is split into two parts. The first part rigorously justifies the proposed asymptotic

critical values. The second part gives a power analysis and shows optimality properties.

2.4.1 Size control

In this section, we derive the limiting distribution of the statistic M̂n under H0. The below

Cramér-type moderate deviation theorem for degenerate U-statistics under a general proba-

bility measure is the foundation of our theory. There has been a large literature on deriving

the moderate deviation theorem for non-degenerate U-statistics (see, for example, Shao and

Zhou (2016) for some recent developments) as well as Berry–Esseen-type bounds for degener-

ate U-statistics (see Bentkus and Götze (1997) and Götze and Zaitsev (2014) among many).

However, to our knowledge, the literature does not provide a comparable moderate deviation

theorem for degenerate U-statistics.
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Theorem 2.4.1 (Cramér-type moderate deviation for degenerate U-statistics). Let Z1, . . . , Zn

be (not necessarily continuous) i.i.d. random variables with distribution PZ. Consider the

U-statistic

Ûn =

(
n

m

)−1 ∑
1≤i1<···<im≤n

h(Zi1 , . . . , Zim),

where the kernel h(·) is symmetric and such that (i) ‖h‖∞ <∞, (ii) h1(Z1; PZ) = 0 almost

surely, and (iii) h2(z1, z2; PZ) admits the eigenfunction expansion,

h2(z1, z2; PZ) =
∞∑
v=1

λvφv(z1)φv(z2),

with λ1 ≥ λ2 ≥ · · · ≥ 0, Λ :=
∑∞

v=1 λv ∈ (0,∞), and supv‖φv‖∞ < ∞. We then have, for

any sequence of positive scalars en → 0,

lim
n→∞

sup
xn∈[−Λ,ennθ]

∣∣∣∣∣∣
P
{(

m
2

)−1
(n− 1)Ûn > xn

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} − 1

∣∣∣∣∣∣ = 0,

where {ξv, v = 1, 2, . . .} are i.i.d. standard Gaussian, and θ is any absolute constant such

that

θ < sup
{
q ∈ [0, 1/3) :

∑
v>bn(1−3q)/5c

λv = O(n−q)
}

(2.4.1)

if infinitely many of eigenvalues λv are nonzero, and θ = 1/3 otherwise.

In Theorem 2.4.1, when there are only finitely many nonzero eigenvalues, the range

o(n1/3) is the standard one for Cramér-type moderate deviation. When there are infinitely

many nonzero eigenvalues, it is still unclear if the range o(nθ) is the best possible one. It is

certainly an interesting question to investigate the optimal range for degenerate U-statistics

in the future. With the aid of Theorem 2.4.1 and combining it with Proposition 2.3.2, we

can now show that, under H0, even if p is exponentially larger than the sample size n, our

maximum-type test statistic still weakly converges to the Gumbel distribution specified in

Proposition 2.3.2. Hence, the proposed test Tα in (2.3.1) can effectively control the size.
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Theorem 2.4.2 (Limiting null distribution). Assume X1, . . . , Xp are continuous and the

independence hypothesis H0 holds. Let Ûjk, j < k, have a common kernel h that satisfies

Assumption 2.2.1. Define the parameter θ as in (2.4.1). Then if p = pn goes to infinity with

n such that log p = o(nθ), it holds for any absolute constant y ∈ R that

P
{ n− 1

λ1

(
m
2

) max
j<k

Ûjk − 4 log p− (µ1 − 2) log log p+
Λ

λ1

≤ y
}

= exp
{
− 2µ1/2−2κ

Γ(µ1/2)
exp

(
− y

2

)}
+ o(1).

Consequently,

PH0(Tα = 1) = α + o(1),

where PH0 represents the probability under the null hypothesis H0.

Note that the proof of Theorem 2.4.2 uses the Chen–Stein method, via Theorem 1 of

Arratia et al. (1989), which is able to handle our case where the random variables are

not mutually independent. We emphasize that our theory holds without any distributional

assumption on X except for marginal continuity. This property of being distribution-free

in the class of multivariate distributions with continuous margins is essentially shared by all

rank-based correlation measures, but is clearly not satisfied by other measures like linear or

distance covariance as was illustrated, for example, by Jiang (2004) and Yao et al. (2018).

As a simple consequence of Theorem 2.4.2, the following corollary shows that the tests

in Examples 2.3.1–2.3.3 have asymptotically correct sizes, with θ being explicitly calculated.

Corollary 2.4.1. Let X1, . . . , Xp be continuous. Let p go to infinity with n in such a way

that log p = o(n1/8−δ) for some arbitrarily small pre-specified constant δ > 0. Then

PH0(TD,α = 1) = α + o(1), PH0(TR,α = 1) = α + o(1),

and PH0(Tτ∗,α = 1) = α + o(1).
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2.4.2 Power analysis and rate-optimality

We now investigate the power of the proposed tests from an asymptotic minimax perspective.

The key ingredient is the choice of a suitable distribution family as an alternative to the null

hypothesis in (2.1.1). Recall the definition of h(1)(·) in (2.2.2). For any kernel function h(·)

and constants γ > 0 and q ∈ Z+, define a general q-dimensional (not necessarily continuous)

distribution family as follows:

D(γ, q;h) :=
{
L(X) : X ∈ Rq,Varjk{h(1)(·; Pjk)} ≤ γEjkh for all j 6= k ∈ JqK

}
,

where L(X) is the distribution (law) of X, and Pjk, Ejk(·), and Varjk(·) stand for the

probability measure, expectation, and variance operated on the bivariate distribution of

(Xj, Xk)
>, respectively.

The familyD(γ, q;h) intrinsically characterizes the slope of the function Varjk{h(1)(·; Pjk)}

with regard to the dependence between Xj and Xk, characterized by the “correlation mea-

sure” Ejkh. Intuitively, consider Ejkh as a rank correlation measure of dependence between

Xj and Xk. When Xj is independent of Xk, we have that

Varjk{h(1)(·;Pj ⊗ Pk)} = 0 = Ejkh

as long as Assumption 2.1 holds for h(·). Therefore, heuristically, as the dependence between

Xj and Xk increases, it is possible that the variance Varjk{h(1)(·;Pjk)} will deviate from 0

at the same or a slower rate compared to Ejkh. Note that both parameters are nonnegative.

The next lemma firms up this intuition by establishing that the Gaussian family belongs to

D(γ, q;h) for all the kernels h(·) considered in Examples 2.2.1 to 2.2.3, provided γ is large

enough.

Lemma 2.4.1. There exists an absolute constant γ > 0 such that for all q ∈ Z+, any

q-dimensional Gaussian distribution is in D(γ, q;hD), D(γ, q;hR), and D(γ, q;hτ∗).
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Next we introduce a class of matrices indexed by a positive constant C as

Up(C) :=
{

M ∈ Rp×p : max
j<k
{Mjk} ≥ C(log p/n)

}
.

Such matrices will define a “sparse local alternative” as considered also in Section 4.1 in

Han et al. (2017). Note, however, that in our case the scale is at the order of log p/n as

opposed to (log p/n)1/2 in Han et al. (2017). This is due to our statistics being degenerate

under independence. Hence, the variance of h(1)(·) is zero under the null, while nonzero for

these statistics investigated in Han et al. (2017). It should also be noted that these two

classes cannot be directly compared; intuitively the consistent measures are defined on a

squared scale when contrasted to the non-consistent measures. As will be shown later, in

the example of the Gaussian case, both classes correspond to a condition on the Pearson

correlation obeying the rate (log p/n)1/2.

The following theorem now describes “local alternatives” under which the power of our

general test Tα tends to one as both n and p go to infinity.

Theorem 2.4.3 (Power analysis, general). Given any γ > 0 and a kernel h(·) satisfying

Assumption 2.2.1, there exists some sufficiently large Cγ depending on γ such that

lim inf
n,p→∞

inf
U∈Up(Cγ)

PU(Tα = 1) = 1,

where, for each specified (n, p), the infimum is taken over all distributions in D(γ, p;h) that

have the matrix of population dependence coefficients U = [Ujk] in Up(Cγ). Here, Ujk :=

EÛjk.

The proof of Theorem 2.4.3 only uses the Hoeffding decomposition for U-statistics, Bern-

stein’s inequality for the sample mean part, and Arcones and Giné’s inequality for the degen-

erate U-statistics parts (Arcones and Giné, 1993). Consequently, we do not have to assume

any continuity of X. The theorem immediately yields the following corollary, characterizing
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the local alternatives under which the three rank-based tests from Examples 2.3.1–2.3.3 have

power tending to 1.

Corollary 2.4.2 (Power analysis, examples). Given any γ > 0, we have, for some sufficiently

large Cγ depending on γ,

lim inf
n,p→∞

inf
D∈Up(Cγ)

PD(TD,α = 1) = 1, lim inf
n,p→∞

inf
R∈Up(Cγ)

PR(TR,α = 1) = 1,

lim inf
n,p→∞

inf
T∗∈Up(Cγ)

PT∗(Tτ∗,α = 1) = 1,

where, for each specified (n, p), the infima are taken over all distributions in D(γ, p;hD),

D(γ, p;hR), and D(γ, p;hτ∗) with population dependence coefficient matrices D = [Djk],

R = [Rjk], and T∗ = [τ ∗jk] for Djk := ED̂jk, Rjk := ER̂jk, and τ ∗jk := Eτ̂ ∗jk, respectively.

We now turn to optimality of the proposed tests. There have been long debates on

the power of consistent rank-based tests compared to those based on linear and simple rank

correlation measures. As a matter of fact, Blum et al. (1961) have given interesting comments

on this topic, stating that the required sample size for the bivariate independence test based

on hR(·) is of the same order as that in common parametric cases, hinting that even under a

particular parametric model these nonparametric consistent tests of independence can be as

rate-efficient as tests that specifically target the considered model. Leung and Drton (2018)

and Han et al. (2017), among many others, derived rate-optimality results for rank-based

tests. However, their results do not cover those that permit consistent assessment of pairwise

independence. Recently, Yao et al. (2018) made a first step towards a minimax optimality

result for consistent tests of independence. Their result shows an infeasible version of a

test based on distance covariance to be rate-optimal against a Gaussian dense alternative.

However, it remained an open question if there exists a feasible (consistent) test of mutual

independence in high dimensions that is rate-optimal against certain alternatives. Below we

are able to give an affirmative answer.
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We shall focus on the proposed tests in Examples 2.3.1–2.3.3 and show their rate-

optimality in the Gaussian model. To this end, we define a new alternative class of matrices

V(C) :=
{

M∈Rp×p: M � 0, diag(M)=Ip,M=M>,max
j 6=k
|Mjk| ≥ C

√
log p

n

}
,

where M � 0 denotes positive semi-definiteness. We then have the following theorem as

a consequence of Corollary 2.4.2. It concerns the proposed tests’ power under a Gaussian

model with some nonzero pairwise correlations but for which these are decaying to zero as

the sample size increases, and is immediate from the fact that, as (Xj, Xk)
> is bivariately

normal with correlation ρjk, we have

Djk, Rjk, τ
∗
jk � ρ2

jk as ρjk → 0.

Since the test statistics are all rank-based and thus invariant to monotone marginal transfor-

mations, extension of the following result to the corresponding Gaussian copula family with

continuous margins is straightforward.

Theorem 2.4.4 (Power analysis, Gaussian). For a sufficiently large absolute constant C0 >

0, we have, as long as n, p→∞,

inf
Σ∈V(C0)

PΣ(TD,α = 1) = 1− o(1), inf
Σ∈V(C0)

PΣ(TR,α = 1) = 1− o(1),

and inf
Σ∈V(C0)

PΣ(Tτ∗,α = 1) = 1− o(1),

where infima are over centered Gaussian distributions with (Pearson) covariance matrix Σ =

[Σjk].

The proof of Theorem 2.4.4 is given in the supplement. It relies on Lemma 2.4.1 and the

fact that Djk, Rjk, τ
∗
jk � Σ2

jk as Σjk → 0. Combined with the following result from Han et al.

(2017), Theorem 2.4.4 yields minimax rate-optimality of the tests in Examples 2.3.1–2.3.3

against the sparse Gaussian alternative.
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Theorem 2.4.5 (Rate optimality, Theorem 5 in Han et al., 2017). There exists an absolute

constant c0 > 0 such that for any number β > 0 satisfying α + β < 1, in any asymptotic

regime with p → ∞ as n → ∞ but log p/n = o(1), it holds for all sufficiently large n and p

that

inf
Tα∈Tα

sup
Σ∈V(c0)

PΣ(Tα = 0) ≥ 1− α− β.

Here the infimum is taken over all size-α tests, and the supremum is taken over all centered

Gaussian distributions with (Pearson) covariance matrix Σ.

2.5 Simulation studies

In this section we compare the finite-sample performance of the three tests (Extreme D,

Extreme R, and Extreme τ ∗) from Section 2.3 to eight existing tests proposed in the literature

via Monte Carlo simulations. The first eight tests are rank-based and hence distribution-free

in the class of multivariate distributions with continuous margins, while the other three tests

are distribution-dependent:

• DHSD: the maximum-type test in Example 2.3.1;

• DHSR: the maximum-type test in Example 2.3.2;

• DHSτ∗ : the maximum-type test in Example 2.3.3;

• LDτ : the L2-type test based on Kendall’s τ (Leung and Drton, 2018);

• LDρ: the L2-type test based on Spearman’s ρ (Leung and Drton, 2018);

• LDτ∗ : the L2-type test based on Bergsma–Dassios–Yanagimoto’s τ ∗ (Leung and Drton,

2018);

• HCLτ : the maximum-type test based on Kendall’s τ (Han et al., 2017);

• HCLρ: the maximum-type test based on Spearman’s ρ (Han et al., 2017);

• YZS: the L2-type test based on the distance covariance statistic (Yao et al., 2018);
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• SC: the L2-type test based on Pearson’s r (Schott, 2005);

• CJ: the maximum-type test based on Pearson’s r (Cai and Jiang, 2011).

2.5.1 Computational aspects

Throughout this section {zi = (z1i, z2i)
>}i∈JnK is a bivariate sample that contains no tie. We

first discuss how to compute the U-statistics D̂, R̂, and τ̂ ∗ for Hoeffding’s D, Blum–Kiefer–

Rosenblatt’s R, and Bergsma–Dassios–Yanagimoto’s τ ∗, respectively. As we review below,

efficient algorithms are available for D̂ and τ̂ ∗. The value of R̂ may then be found using the

relation in (2.3.2).

Hoeffding (1948) himself observed that D̂ can be computed in O(n log n) time via the

following formula
D̂

30
=
P − 2(n− 2)Q+ (n− 2)(n− 3)S

n(n− 1)(n− 2)(n− 3)(n− 4)
.

Here

P :=
n∑
i=1

(ri − 1)(ri − 2)(si − 1)(si − 2),

Q :=
n∑
i=1

(ri − 1)(si − 1)ci, S :=
n∑
i=1

ci(ci − 1),

and ri and si are the ranks of z1i among {z11, . . . , z1n} and z2i among {z21, . . . , z2n}, re-

spectively. Moreover, ci is the number of samples zi′ = (z1i′ , z2i′) for which z1i′ < z1i and

z2i′ < z2i.

Weihs et al. (2016) and Heller and Heller (2016b) proposed algorithms for efficient com-

putation of the Bergsma–Dassios–Yanagimoto statistic τ̂ ∗. Without loss of generality, let

z11 < · · · < z1n, i.e., ri = i. Weihs et al. (2016) proved that 2τ̂ ∗/3 = Nc/
(
n
4

)
− 1/3 with

Nc =
∑

3≤`<`′≤n

(
B<[`, `′]

2

)
+

(
B>[`, `′]

2

)
,
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where for all ` < `′,

B<[`, `′] := #{i : i ∈ J`− 1K, z2i < min(z2`, z2`′)}

and B>[`, `′] := #{i : i ∈ J`− 1K, z2i >max(z2`, z2`′)}.

Weihs et al. (2016) went on to give an algorithm to compute these counts, and thus τ̂ ∗,

in O(n2 log n) time with little memory use. Heller and Heller (2016b) showed that the

computation time can be further lowered to O(n2) via calculation of the following matrix

based on the empirical distribution of the ranks ri and si,

B[r, s] :=
n∑
i=1

1(ri ≤ r, si ≤ s), 0 ≤ r, s ≤ n.

Here, B[r, 0] := 0 and B[0, s] := 0. We may then find B<[`, `′] = B[`−1,min(s`, s`′)−1] and

B>[`, `′] = `−B[`,max(s`, s`′)] for all ` < `′; recall that si is the rank of z2i in {z21, . . . , z2n}.

As a consequence, formula (2.3.2) now also yields an O(n2) algorithm for R̂.

Regarding other competing statistics, note that Pearson’s r and Spearman’s ρ can be

naively computed in time O(n) and O(n log n), respectively. Knight (1966) proposed an effi-

cient algorithm for computing Kendall’s τ that has time complexity O(n log n). Finally, the

algorithm of Huo and Székely (2016) computes the distance covariance statistic in O(n log n)

time.

Table 2.1 shows empirical computation times for the considered statistics on 1,000 bi-

variate samples of size n = 100, 200, 400, and 800, respectively randomly generated as

i.i.d. standard bivariate normal. The timings are based on available functions in R. Pear-

son’s r and Spearman’s ρ were computed using the basic cor() function, with option

method="spearman" for ρ. Kendall’s τ was computed with the function cor.fk() from

package pcaPP, Hoeffding’s D with hoeffD() from SymRC, Bergsma–Dassios–Yanagimoto’s

τ ∗ with tStar() from TauStar, and the distance covariance with dcov2d() from energy.
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Table 2.1: A comparison of computation time for all the correlation statistics considered.
The computation time here is the averaged elapsed time (in milliseconds) of 1,000 replicates
of a single experiment.

n
Hoeffding’s

D
BDY’s
τ∗

Pearson’s
r

Spearman’s
ρ

Kendall’s
τ

distance
correla-
tion

100 0.270 0.167 0.060 0.121 0.064 0.667
200 0.962 0.543 0.080 0.144 0.085 1.194
400 4.419 2.364 0.099 0.206 0.106 2.313
800 9.683 20.860 0.103 0.327 0.148 4.410

Blum–Kiefer–Rosenblatt’s R̂ was then obtained using identity (2.3.2), and its computation

time is thus omitted. All experiments are conducted on a laptop with a 2.6 GHz Intel Core

i5 processor and a 8 GB memory.

While the above statistics can all be computed efficiently using special purpose algo-

rithms, our theory also covers general rank-based statistics for which only a naive algorithm

that follows the U-statistic definition may be available. The complexity of computing the

statistic could then be a high degree polynomial of the sample size. We note that in this

case, it may become necessary to use resampling and subsampling techniques to decrease

computational effort, as was done by Bergsma and Dassios (2014, Section 4) when applying

their statistics before efficient algorithms for its computation were developed.

2.5.2 Simulation results

We evaluate the empirical sizes and powers of the eleven competing tests introduced above

for both Gaussian and non-Gaussian distributions. The values reported below are based on

5, 000 simulations at the nominal significance level of 0.05, with sample size n ∈ {100, 200}

and dimension p ∈ {50, 100, 200, 400, 800}. All data sets are generated as an i.i.d. sample

from the distribution specified for the p-dimensional random vector X.
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We investigate the sizes of the tests in four settings, where X = (X1, . . . , Xp)
> has

mutually independent entries. In the following, with slight abuse of notation, we write

f(v) = (f(v1), . . . , f(vp))
> for any univariate function f : R → R and v = (v1, . . . , vp)

> ∈

Rp.

Example 2.5.1.

(a) X ∼ Np(0, Ip) (standard Gaussian).

(b) X = W 1/3 with W ∼ Np(0, Ip) (light-tailed Gaussian copula).

(c) X = W 3 with W ∼ Np(0, Ip) (heavy-tailed Gaussian copula).

(d) X1, . . . , Xp are i.i.d. with a t-distribution with 3 degrees of freedom.

The simulated sizes of the eight rank-based tests are reported in Table 2.2. Those of the

three distribution-dependent tests are given in Table 2.3. As expected, the tests derived from

Gaussianity (SC, CJ) fail to control the size for heavy-tailed distributions. In contrast, the

other tests control the size effectively in most circumstances. A slight size inflation is observed

for DHSD at small sample size, which can be addressed using Monte Carlo approximation to

set the critical value. In addition, when considering different pairs of (n, p) in Table 2.2, as

long as n and p grow simultaneously, a trend to the nominal level 0.05 is clear; e.g., as (n, p)

grows from (100, 200) to (200, 400), the empirical size of DHSD changes from 0.076 to 0.064,

that of DHSR changes from 0.028 to 0.040, and that of DHSτ∗ changes from 0.036 to 0.045.

These phenomena back up Corollary 2.4.1, and this trend persists in more simulations as n

and p become even larger.

In order to study the power properties of the different statistics, we consider three sets of

examples. We remark that, regarding the power, for L2-type and maximum-type tests, one

cannot dominate the other; compare the power analyses in Section 3.3 in Cai et al. (2013)

and Section 5.2 in Leung and Drton (2018). To reflect this, we consider two sets of examples
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Table 2.2: Empirical sizes of the eight rank-based tests in Example 2.5.1

n p DHSD DHSR DHSτ∗ LDτ LDρ LDτ∗ HCLτ HCLρ
100 50 0.070 0.042 0.047 0.054 0.048 0.056 0.037 0.028

100 0.073 0.035 0.042 0.055 0.047 0.066 0.034 0.021
200 0.076 0.028 0.036 0.058 0.050 0.059 0.028 0.015
400 0.084 0.025 0.035 0.054 0.045 0.065 0.025 0.012
800 0.088 0.021 0.032 0.055 0.049 0.062 0.023 0.008

200 50 0.054 0.042 0.044 0.048 0.044 0.051 0.037 0.034
100 0.057 0.042 0.044 0.052 0.047 0.052 0.038 0.032
200 0.059 0.038 0.042 0.052 0.050 0.055 0.037 0.032
400 0.064 0.040 0.045 0.051 0.048 0.053 0.038 0.027
800 0.065 0.034 0.040 0.051 0.047 0.055 0.034 0.024

that focus on relatively sparse settings (modified based on Yao et al. (2018) and Han et al.

(2017)) but also include a very dense third setup (modified based on Leung and Drton (2018)

with an adjustment to dimension as suggested in Cai and Ma (2013, Theorems 1 and 4)).

Example 2.5.2.

(a) The data are generated as X = (X>1 ,X
>
2 )>, where

X1 = (ω>, sin(2πω)>, cos(2πω)>, sin(4πω)>, cos(4πω)>)> ∈ R10

with ω ∼ N2(0, I2), and X2 ∼ Np−10(0, Ip−10) independent of X1.

(b) The data are generated as X = (X>1 ,X
>
2 )>, where

X1 = (ω>, log(ω2)>)> ∈ R10

with ω ∼ N5(0, I5), and X2 ∼ Np−10(0, Ip−10) independent of X1.

Example 2.5.3.

(a) The data are drawn as X ∼ Np(0,R
∗) with R∗ generated as follows: Consider a

random matrix ∆ with all but eight random nonzero entries. We select the locations
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Table 2.3: Empirical sizes of the three distribution-dependent tests in Example 2.5.1

n p YZS SC CJ YZS SC CJ YZS SC CJ YZS SC CJ
Results for Case (a) Results for Case (b) Results for Case (c) Results for Case (d)

100 50 0.048 0.051 0.029 0.052 0.052 0.036 0.055 0.210 0.974 0.055 0.081 0.479
100 0.054 0.052 0.018 0.048 0.047 0.032 0.052 0.206 1.000 0.053 0.083 0.781
200 0.059 0.051 0.013 0.055 0.055 0.024 0.052 0.207 1.000 0.058 0.089 0.974
400 0.049 0.049 0.011 0.053 0.051 0.022 0.052 0.210 1.000 0.055 0.089 1.000
800 0.050 0.045 0.005 0.050 0.048 0.018 0.055 0.222 1.000 0.051 0.092 1.000

200 50 0.050 0.044 0.032 0.050 0.052 0.040 0.054 0.194 0.955 0.050 0.086 0.527
100 0.049 0.049 0.029 0.049 0.051 0.036 0.048 0.190 1.000 0.052 0.089 0.850
200 0.053 0.049 0.030 0.052 0.053 0.035 0.055 0.193 1.000 0.050 0.085 0.996
400 0.051 0.049 0.022 0.050 0.048 0.035 0.050 0.193 1.000 0.050 0.091 1.000
800 0.050 0.053 0.018 0.051 0.053 0.033 0.052 0.188 1.000 0.049 0.088 1.000

of four nonzero entries randomly from the upper triangle of ∆, each with a magnitude

randomly drawn from the uniform distribution in [0, 1]. The other four nonzero entries

in the lower triangle are determined to make ∆ symmetric. Finally,

R∗ = (1 + δ)Ip + ∆,

where δ = {−λmin(Ip + ∆) + 0.05} · 1{λmin(Ip + ∆) ≤ 0} and λmin(·) denotes the

smallest eigenvalue of the input.

(b) The data are drawn as X = sin(2πZ1/3/3), where Z ∼ Np(0,R
∗) with R∗ as in (a).

(c) The data are drawn as X = sin(πZ3/4), where Z ∼ Np(0,R
∗) with R∗ as in (a).

Example 2.5.4. The data are drawn as X ∼ Np(0,R
∗), where R∗ = (1− %)Ip + %Jp with

% such that

(a)
(
p
2

)
(2 arcsin %/π)2 = p/n;

(b)
(
p
2

)
(2 arcsin %/π)2 = (3/2) · p/n;

(c)
(
p
2

)
(2 arcsin %/π)2 = 2p/n.
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The powers for Examples 2.5.2–2.5.4 are reported in Tables 2.4–2.6. Several observations

stand out. First, throughout the sparse examples, we found that the proposed tests have

the highest powers on average. Among the three proposed tests, the power of DHSD is

highest on average, followed by DHSτ∗ . Recall, however, that DHSD can be subject to

slight size inflation. Second, focusing on the results in Example 2.5.2, we note that, as more

independent components are added, the power of YZS significantly decreases. This is as

expected and indicates that YZS is less powerful in detection of sparse dependences. In

addition, both HCLτ and HCLρ perform unsatisfactorily in Example 2.5.2, indicating that

they are powerless in detecting the considered non-linear, non-monotone dependences, an

observation that was also made in Yao et al. (2018). Fourth, Tables 2.4 and 2.5 jointly confirm

the intuition that, for sparse alternatives, the proposed maximum-type tests dominate L2-

type ones including both YZS and LDτ∗ , especially when p is large. In addition, we note

that, under the setting of Example 2.5.3, the performances of HCLτ and HCLρ are the second

best to the proposed consistent rank-based tests, indicating that there exist cases in which

simple rank correlation measures like Kendall’s τ and Spearman’s ρ can still detect aspects

of non-linear non-monotone dependences. Fifth, under a Gaussian parametric model, Table

2.5 (the first part) shows that CJ, the maximum-type test based on Pearson’s r, indeed

outperforms all others, though the difference between it and the proposed rank-based ones is

small. Lastly, Table 2.6 shows that, as the signals are rather dense, L2-type tests dominate

the maximum-type ones, confirming the intuition and also the theoretical findings that L2-

type ones are more powerful in the dense setting.

We end this section with a discussion of the simulation-based approach. In view of

Proposition 2.2.1, the distributions of rank-based test statistics are invariant to the generating

distribution, and hence we may use simulations to approximate the exact distribution of

S :=
n− 1

λ1

(
m
2

) max
j<k

Ûjk − 4 log p− (µ1 − 2) log log p+
Λ

λ1

.
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Table 2.4: Empirical powers of the eleven competing tests in Example 2.5.2

n p DHSD DHSR DHSτ∗ LDτ LDρ LDτ∗ HCLτ HCLρ YZS SC CJ
Results for Example 2.5.2(a)

100 50 1.000 1.000 1.000 0.058 0.049 1.000 0.089 0.033 0.442 0.047 0.024
100 1.000 1.000 1.000 0.055 0.045 1.000 0.070 0.025 0.156 0.049 0.018
200 1.000 1.000 1.000 0.052 0.046 1.000 0.049 0.017 0.071 0.048 0.011
400 1.000 1.000 1.000 0.058 0.049 0.973 0.043 0.014 0.057 0.050 0.011
800 1.000 0.827 1.000 0.061 0.052 0.520 0.029 0.009 0.054 0.050 0.007

200 50 1.000 1.000 1.000 0.053 0.045 1.000 0.099 0.038 0.955 0.053 0.033
100 1.000 1.000 1.000 0.055 0.051 1.000 0.080 0.038 0.435 0.050 0.032
200 1.000 1.000 1.000 0.048 0.045 1.000 0.060 0.028 0.142 0.045 0.023
400 1.000 1.000 1.000 0.052 0.047 1.000 0.049 0.023 0.078 0.048 0.023
800 1.000 1.000 1.000 0.057 0.052 1.000 0.044 0.020 0.053 0.050 0.021

Results for Example 2.5.2(b)
100 50 1.000 1.000 1.000 0.065 0.049 1.000 0.106 0.037 0.984 0.049 0.026

100 1.000 1.000 1.000 0.054 0.046 1.000 0.078 0.026 0.660 0.046 0.020
200 1.000 1.000 1.000 0.059 0.052 1.000 0.055 0.018 0.266 0.051 0.014
400 1.000 1.000 1.000 0.059 0.052 0.996 0.039 0.014 0.107 0.046 0.010
800 1.000 0.897 1.000 0.059 0.051 0.642 0.030 0.007 0.067 0.052 0.005

200 50 1.000 1.000 1.000 0.062 0.053 1.000 0.120 0.042 1.000 0.050 0.033
100 1.000 1.000 1.000 0.053 0.047 1.000 0.087 0.040 0.996 0.045 0.036
200 1.000 1.000 1.000 0.051 0.047 1.000 0.061 0.030 0.729 0.045 0.023
400 1.000 1.000 1.000 0.053 0.050 1.000 0.050 0.023 0.272 0.053 0.023
800 1.000 1.000 1.000 0.047 0.044 1.000 0.042 0.021 0.102 0.046 0.016

In detail, we pick a large integer M to be the number of independent replications. For each

t ∈ [M ], compute S(t) as the value of S for an n×p data matrix X(t) ∈ Rn×p drawn as having

i.i.d. Uniform(0,1) entries. Let F̂n,p;M(y) = 1
M

∑M
t=1 1{S(t) ≤ y}, y ∈ R, be the resulting

empirical distribution function. For a specified significance level α ∈ (0, 1), we may now use

the simulated quantile Q̂α,n,p;M := inf{y ∈ R : F̂n,p;M(y) ≥ 1− α} to form the test

Texact
α := 1

{ n− 1

λ1

(
m
2

) max
j<k

Ûjk − 4 log p− (µ1 − 2) log log p+
Λ

λ1

> Q̂α,n,p;M

}
.

The test becomes exact in the largeM limit, immediately by the Dvoretzky–Kiefer–Wolfowitz

inequality for empirical distribution functions (e.g., Kosorok, 2008, Theorem 11.6), and is
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Table 2.5: Empirical powers of the eleven competing tests in Example 2.5.3

n p DHSD DHSR DHSτ∗ LDτ LDρ LDτ∗ HCLτ HCLρ YZS SC CJ
Results for Example 2.5.3(a)

100 50 0.967 0.962 0.964 0.705 0.586 0.946 0.970 0.966 0.555 0.624 0.973
100 0.959 0.952 0.954 0.392 0.259 0.914 0.960 0.956 0.252 0.283 0.962
200 0.950 0.938 0.942 0.161 0.107 0.840 0.950 0.943 0.109 0.115 0.950
400 0.936 0.924 0.928 0.089 0.064 0.727 0.938 0.931 0.064 0.073 0.941
800 0.931 0.911 0.918 0.061 0.049 0.539 0.929 0.916 0.051 0.051 0.931

200 50 0.991 0.991 0.991 0.912 0.891 0.988 0.993 0.992 0.871 0.906 0.993
100 0.984 0.985 0.985 0.728 0.627 0.974 0.988 0.987 0.579 0.650 0.989
200 0.984 0.983 0.983 0.408 0.278 0.954 0.987 0.985 0.255 0.299 0.988
400 0.986 0.983 0.983 0.166 0.110 0.917 0.986 0.985 0.111 0.115 0.989
800 0.980 0.976 0.978 0.073 0.060 0.839 0.983 0.980 0.058 0.063 0.986

Results for Example 2.5.3(b)
100 50 0.759 0.642 0.687 0.244 0.167 0.623 0.623 0.553 0.277 0.260 0.786

100 0.747 0.624 0.670 0.131 0.091 0.555 0.607 0.540 0.131 0.125 0.758
200 0.720 0.583 0.635 0.082 0.062 0.444 0.578 0.502 0.080 0.075 0.714
400 0.702 0.557 0.615 0.065 0.054 0.333 0.549 0.471 0.060 0.061 0.678
800 0.679 0.512 0.577 0.057 0.048 0.218 0.517 0.431 0.052 0.051 0.638

200 50 0.897 0.843 0.866 0.423 0.343 0.825 0.810 0.767 0.577 0.550 0.928
100 0.880 0.819 0.846 0.248 0.170 0.753 0.784 0.732 0.287 0.273 0.912
200 0.855 0.789 0.818 0.128 0.088 0.670 0.757 0.714 0.129 0.128 0.891
400 0.849 0.768 0.799 0.074 0.059 0.571 0.743 0.689 0.065 0.064 0.875
800 0.820 0.738 0.772 0.051 0.045 0.450 0.713 0.654 0.053 0.051 0.852

Results for Example 2.5.3(c)
100 50 0.654 0.579 0.608 0.209 0.137 0.541 0.582 0.513 0.111 0.106 0.365

100 0.656 0.566 0.599 0.109 0.072 0.464 0.580 0.502 0.071 0.064 0.344
200 0.635 0.527 0.571 0.069 0.055 0.364 0.539 0.455 0.056 0.051 0.311
400 0.617 0.496 0.546 0.068 0.059 0.256 0.516 0.421 0.053 0.058 0.277
800 0.597 0.455 0.507 0.055 0.049 0.164 0.487 0.370 0.055 0.049 0.238

200 50 0.824 0.789 0.803 0.396 0.302 0.750 0.785 0.753 0.238 0.211 0.606
100 0.812 0.773 0.788 0.219 0.143 0.681 0.768 0.732 0.113 0.100 0.570
200 0.792 0.752 0.767 0.101 0.072 0.596 0.750 0.711 0.063 0.059 0.543
400 0.776 0.728 0.744 0.070 0.054 0.499 0.730 0.689 0.058 0.057 0.513
800 0.755 0.699 0.723 0.052 0.048 0.360 0.699 0.646 0.044 0.051 0.473
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Table 2.6: Empirical powers of the eleven competing tests in Example 2.5.4

n p DHSD DHSR DHSτ∗ LDτ LDρ LDτ∗ HCLτ HCLρ YZS SC CJ
Results for Example 2.5.4(a)

100 50 0.102 0.068 0.074 0.532 0.524 0.350 0.062 0.046 0.474 0.578 0.042
100 0.104 0.056 0.066 0.578 0.560 0.361 0.052 0.036 0.492 0.620 0.033
200 0.096 0.035 0.048 0.583 0.565 0.343 0.037 0.022 0.488 0.620 0.018
400 0.104 0.040 0.050 0.542 0.534 0.320 0.038 0.018 0.471 0.610 0.012
800 0.095 0.018 0.032 0.570 0.552 0.344 0.027 0.007 0.487 0.620 0.005

200 50 0.104 0.080 0.086 0.564 0.544 0.357 0.081 0.072 0.478 0.614 0.068
100 0.073 0.052 0.059 0.590 0.580 0.357 0.054 0.043 0.509 0.654 0.052
200 0.085 0.061 0.064 0.594 0.585 0.336 0.052 0.040 0.488 0.652 0.040
400 0.075 0.040 0.049 0.604 0.591 0.332 0.038 0.028 0.498 0.668 0.024
800 0.067 0.036 0.044 0.586 0.573 0.320 0.034 0.027 0.488 0.640 0.026

Results for Example 2.5.4(b)
100 50 0.130 0.078 0.086 0.792 0.782 0.554 0.076 0.064 0.722 0.836 0.055

100 0.110 0.056 0.062 0.808 0.800 0.584 0.052 0.035 0.746 0.848 0.032
200 0.099 0.046 0.060 0.810 0.800 0.553 0.042 0.026 0.738 0.850 0.021
400 0.110 0.030 0.041 0.808 0.797 0.587 0.034 0.014 0.738 0.854 0.012
800 0.098 0.020 0.033 0.816 0.804 0.579 0.023 0.008 0.745 0.872 0.006

200 50 0.116 0.094 0.098 0.802 0.801 0.546 0.103 0.084 0.718 0.858 0.098
100 0.098 0.072 0.076 0.827 0.822 0.571 0.075 0.062 0.768 0.878 0.058
200 0.063 0.040 0.042 0.848 0.840 0.570 0.036 0.030 0.764 0.888 0.030
400 0.070 0.048 0.055 0.834 0.829 0.578 0.042 0.032 0.752 0.883 0.030
800 0.081 0.036 0.046 0.866 0.862 0.560 0.041 0.028 0.788 0.907 0.030

Results for Example 2.5.4(c)
100 50 0.157 0.102 0.116 0.904 0.900 0.731 0.093 0.069 0.864 0.926 0.076

100 0.124 0.067 0.082 0.914 0.909 0.738 0.058 0.036 0.878 0.943 0.042
200 0.115 0.051 0.059 0.918 0.913 0.748 0.046 0.028 0.880 0.947 0.018
400 0.112 0.034 0.046 0.930 0.926 0.738 0.038 0.017 0.888 0.954 0.009
800 0.101 0.030 0.039 0.927 0.924 0.744 0.029 0.012 0.879 0.946 0.012

200 50 0.120 0.100 0.098 0.935 0.932 0.740 0.110 0.098 0.894 0.952 0.118
100 0.107 0.082 0.085 0.941 0.939 0.740 0.072 0.066 0.892 0.960 0.065
200 0.096 0.062 0.072 0.962 0.960 0.768 0.064 0.048 0.930 0.976 0.046
400 0.077 0.042 0.046 0.964 0.962 0.792 0.037 0.028 0.930 0.978 0.024
800 0.090 0.043 0.054 0.956 0.956 0.776 0.044 0.028 0.922 0.980 0.016
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shown explicitly in the following proposition.

Proposition 2.5.1. Under the independence hypothesis H0, for each (n, p), we have with

probability at least 1− 2/M2 that

sup
α∈[0,1]

∣∣∣P[S > Q̂α,n,p;M

∣∣∣{X(t)}Mt=1

]
−
{

1− F̂n,p;M(Q̂α,n,p;M)
}∣∣∣ ≤ ( logM

M

)1/2

.

Table A.1 in the supplement gives the sizes and powers of the proposed tests with

simulation-based critical values (M = 5, 000). The table shows results only for Exam-

ples 2.5.1, 2.5.3, and 2.5.4 as the simulated powers under Example 2.5.2 were all perfectly

one. It can be observed that all sizes are now well controlled, with powers of the proposed

tests only slightly different from the ones without using simulation. An alternative to the

simulation-based approach would be a permutation-based approach, but we find simula-

tion based on the pivotal null distribution simpler to analyze and with the advantage that

approximation errors can be made arbitrarily small via larger Monte Carlo samples.

2.6 Discussion

2.6.1 Discussion of Assumption 2.2.1

Assumption 2.2.1 plays a key role in our analysis. It synthesizes crucial properties satisfied

by the three rank correlation statistics from Examples 2.2.1–2.2.3.

From a more general perspective, one might ask whether there is an exact relation be-

tween Assumption 2.2.1 and the properties of I- and D-consistency summarized in Weihs

et al. (2018). As a matter of fact, to our knowledge, most existing test statistics (includ-

ing rank-based, distance covariance-based, and kernel-based ones) that permit consistent

assessment of pairwise independence are asymptotically equivalent to U-statistics with the

corresponding kernels degenerate under the null, which echoes Assumption 2.1(ii). The only

exception is a new rank correlation measure that was just proposed (Chatterjee, 2021), whose
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limiting distribution is normal. Its analysis uses the permutation theory and, in particular,

is not based on the U-statistic framework. Assumption 2.1(iii), on the other hand, is much

more specific and related to the particular properties of rank-based consistent tests. This

assumption, however, is key to the establishment of Theorem 2.4.2.

2.6.2 Discussion of τ ∗

In this section we give new perspectives on Bergsma–Dassios–Yanagimoto’s correlation mea-

sure τ ∗ := Ehτ∗ , introduced in Example 2.2.3. Hoeffding (1948) stated a problem about the

relationship between equiprobable rankings and independence that was solved by Yanagi-

moto (1970). In the proof of his Proposition 9, Yanagimoto (1970) presented a correlation

measure that is proportional to τ ∗ of Bergsma–Dassios if the pair is absolutely continuous.

Accordingly, we term the correlation “Bergsma–Dassios–Yanagimoto’s τ ∗”. Yanagimoto’s key

relation gives rise to an interesting identity between Hoeffding’sD, Blum–Kiefer–Rosenblatt’s

R, and Bergsma–Dassios–Yanagimoto’s τ ∗ statistics. This identity appears to be unknown

in the literature. In detail, if z1, . . . ,z6 ∈ R2 have no tie among their first and their second

entries, respectively, then

3 ·
(

6

5

)−1 ∑
1≤i1<···<i5≤6

hD(zi1 , . . . ,zi5) + 2hR(z1, . . . ,z6) (2.6.1)

= 5 ·
(

6

4

)−1 ∑
1≤i1<···<i4≤6

hτ∗(zi1 , . . . ,zi4).

Equation (2.6.1) can be easily verified by calculating all 6! entrywise permutations of {1, 2, . . . ,

6}, but may be false when ties exist. Using the identity, we can make a step towards proving

the conjecture raised in Bergsma and Dassios (2014), that is, for an arbitrary random pair

(Z1, Z2)> ∈ R2, do we have Ehτ∗ ≥ 0 with equality if and only if Z1 and Z2 are independent?

Theorem 2.6.1. For any random vector Z = (Z1, Z2)> ∈ R2 with continuous marginal

distributions, we have Ehτ∗ ≥ 0 and the equality holds if and only if Z1 is independent of Z2.
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Similarly, a monotonicity property of EhD and EhR proved by Yanagimoto (1970, Sec. 2)

extends to Ehτ∗ . We state the Gaussian version of this property.

Theorem 2.6.2. If Z = (Z1, Z2)> ∈ R2 is bivariate Gaussian with (Pearson) correlation ρ,

then EhD and EhR and, thus, also Ehτ∗ are increasing functions of |ρ|.

Theorem 2.6.1 complements the results in Theorem 1 in Bergsma and Dassios (2014) to

include random vectors with continuous margins and a bivariate joint distribution that is

continuous (implied by marginal continuity) but need not be absolutely continuous. Such an

example of distribution on R2 that has continuous margins but is not absolutely continuous

has been constructed in Remark 1 in Yanagimoto (1970), where it is used to illustrate an

inconsistency problem about Hoeffding’s D. A simpler example is the uniform distribution

on the unit circle in R2. For this, we revisit a comment of Weihs et al. (2018) who noted that

based on existing literature “it is not guaranteed that Ehτ∗ > 0 when (X, Y )> is generated

uniformly on the unit circle in R2.” We are able to calculate the values of D and R for this

example and, thus, can deduce the value of τ ∗.

Proposition 2.6.1. For (X, Y )> following the uniform distribution on the unit circle in R2,

we have EhD = EhR = Ehτ∗ = 1/16.
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Chapter 3

ON UNIVERSALLY CONSISTENT AND FULLY
DISTRIBUTION-FREE RANK TESTS OF VECTOR

INDEPENDENCE

3.1 Introduction

Quantifying the dependence between two variables and testing for their independence are

among the oldest and most fundamental problems of statistical inference. The (marginal)

distributions of the two variables under study, in that context, typically play the role of

nuisances, and the need for a nonparametric approach naturally leads, when they are uni-

variate, to distribution-free methods based on their ranks. This paper is dealing with the

multivariate extension of that approach.

3.1.1 Measuring vector dependence and testing independence

Consider two absolutely continuous random vectorsX1 andX2, with values in Rd1 and Rd2 ,

respectively. The problems of measuring the dependence between X1 and X2 and testing

their independence when d1 = d2 = 1 (call this the univariate case) have a long history that

goes back more than a century (Pearson, 1895; Spearman, 1904). The same problem when d1

and d2 are possibly unequal and larger than one (the multivariate case) is of equal practical

interest but considerably more challenging. Following early attempts (Wilks, 1935), a large

literature has emerged, with renewed interest in recent years.

When the marginal distributions of X1 and X2 are unspecified and d1 = d2 = 1, rank

correlations provide a natural and appealing nonparametric approach to testing for indepen-

dence, as initiated in the work of Spearman (1904) and Kendall (1938); cf. Chapter III.6
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in Hájek and Šidák (1967). On one hand, ranks yield distribution-free tests because, under

the null hypothesis of independence, their distributions do not depend on the unspecified

marginal distributions. On the other hand, they can be designed (Hoeffding, 1948; Blum

et al., 1961; Bergsma and Dassios, 2014; Yanagimoto, 1970) to consistently estimate depen-

dence measures that vanish if and only if independence holds, and so detect any type of

dependence—something Spearman and Kendall’s rank correlations cannot.

New subtleties arise, however, when attempting to extend the rank-based approach to

the multivariate case. While dk ranks can be constructed separately for each coordinate

of Xk, k = 1, 2, their joint distribution depends on the distribution of the underlying Xk,

preventing distribution-freeness of the (d1+d2)-tuple of ranks. As a consequence, the existing

tests of multivariate independence based on componentwise ranks (e.g., Puri et al., 1970)

are not distribution-free, which has both computational implications (e.g., through a need

for permutation analysis) and statistical implications (as we shall detail soon).

3.1.2 Desirable properties

In this paper, we develop a general framework for multivariate analogues of popular rank-

based measures of dependence for the univariate case. Our objective is to achieve the fol-

lowing five desirable properties.

(1) Full distribution-freeness. Many statistical tests exploit asymptotic distribution-

freeness for computationally efficient distributional approximations yielding pointwise asymp-

totic control of their size. This is the case, for instance, with Hallin and Paindaveine

(2002c,b,a, 2008) due to estimation of a scatter matrix, or with Taskinen et al. (2003, 2004),

Taskinen et al. (2005). Pointwise asymptotics yield, for any given significance level α ∈ (0, 1),

a sequence of tests φ(n)
α indexed by the sample size n such that limn→∞ EP[φ

(n)
α ] = α for every

distribution P from a class P of null distributions. Generally, however, the size fails to be

controlled in a uniform sense, that is, it does not hold that limn→∞ supP∈P EP[φ
(n)
α ] ≤ α,
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which may explain poor finite-sample properties (see, e.g., Le Cam and Yang, 2000; Leeb

and Pötscher, 2008; Belloni et al., 2014). While uniform inferential validity is impossible to

achieve for some problems, e.g., when testing for conditional independence (Shah and Peters,

2020; Azadkia and Chatterjee, 2021), we shall see that it is achievable for testing (uncondi-

tional) multivariate independence. Indeed, for fully distribution-free tests, as obtained from

our rank-based approach, pointwise validity automatically implies uniform validity.

(2) Transformation invariance. A dependence measure µ is said to be invariant under

orthogonal transformations, shifts, and global rescaling if

µ(X1,X2) = µ(v1 + a1O1X1,v2 + a2O1X2)

for any scalars ak > 0, vectors vk ∈ Rdk , and orthogonal dk × dk matrices Ok, k = 1, 2. This

invariance, here simply termed “transformation invariance”, is a natural requirement in cases

where the components of X1,X2 do not have specific meanings and observations could have

been recorded in another coordinate system. Such invariance is of considerable interest in

multivariate statistics (see, e.g., Gieser and Randles, 1997; Taskinen et al., 2003, 2005; Oja

et al., 2016).

(3) Consistency. Weihs et al. (2018) call a dependence measure µ I-consistent within a

family of distributions P if independence between X1 and X2 with joint distribution in P

implies µ(X1,X2) = 0. If µ(X1,X2) = 0 implies independence of X1 and X2 (i.e., depen-

dence of X1 and X2 implies µ(X1,X2) 6= 0), then µ is D-consistent within P . Note that

the measures considered in this paper do not necessarily take maximal value 1 if and only if

one random vector is a measurable function of the other. While any reasonable dependence

measure should be I-consistent, prominent examples (Pearson’s correlation, Spearman’s ρ,

Kendall’s τ) fail to be D-consistent. If a dependence measure µ is I- and D-consistent,

then the consistency of tests based on an estimator µ(n) of µ is guaranteed by the (strong or

weak) consistency of that estimator. Dependence measures that are both I- and D-consistent
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(within a large nonparametric family) serve an important purpose as they are able to capture

nonlinear dependences. Well-known I- and D-consistent measures for the univariate case in-

clude Hoeffding’s D (Hoeffding, 1948), Blum–Kiefer–Rosenblatt’s R (Blum et al., 1961), and

Bergsma–Dassios–Yanagimoto’s τ ∗ (Bergsma and Dassios, 2014; Yanagimoto, 1970; Drton

et al., 2020). Multivariate extensions have been proposed, e.g., in Gretton et al. (2005c),

Székely et al. (2007), Heller et al. (2012), Heller et al. (2013), Heller and Heller (2016a), Zhu

et al. (2017), Weihs et al. (2018), Kim et al. (2020b), Deb and Sen (2021), Shi et al. (2021a),

Berrett et al. (2021).

(4) Statistical efficiency. Once its size is controlled, the performance of a test may be

evaluated through its power against local alternatives. For the proposed tests, our focus

is on quadratic mean differentiable alternatives (Lehmann and Romano, 2005, Sec. 12.2),

which form a popular class for conducting local power analyses; for related recent examples

see Bhattacharya (2019, Section 3) and Cao and Bickel (2020, Section 4.4). Our results then

show the nontrivial local power of our tests in n−1/2 neighborhoods within this class.

(5) Computational efficiency. Statistical properties aside, modern applications require

the evaluation of a dependence measure and the corresponding test to be as computationally

efficient as possible. We thus prioritize measures leading to low computational complexity.

The main challenge, with this list of five properties, lies in combining the full distribution-

freeness from property (1) with properties (2)–(5). The solution, as we shall see, involves an

adequate multivariate extension of the univariate concepts of ranks and signs.

3.1.3 Contribution of this paper

This paper proposes a class of dependence measures and tests that achieve the five properties

from Section 3.1.2 by leveraging the recently introduced multivariate center-outward ranks

and signs (Chernozhukov et al., 2017; Hallin, 2017); see Hallin et al. (2021a) for a complete
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account. In contrast to earlier related concepts such as componentwise ranks (Puri and Sen,

1971), spatial ranks (Oja, 2010; Han and Liu, 2018), depth-based ranks (Liu and Singh, 1993;

Zuo and He, 2006), and pseudo-Mahalanobis ranks and signs (Hallin and Paindaveine, 2002c),

the new concept yields statistics that enjoy full distribution-freeness (in finite samples and,

thus, asymptotically) as soon as the underlying probability measure is Lebesgue-absolutely

continuous. This allows for a general multivariate strategy, in which the observations are

replaced by functions of their center-outward ranks and signs when forming dependence

measures and corresponding test statistics. This is also the idea put forth in Shi et al.

(2021a) and, in a slightly different way, in Deb and Sen (2021), where the focus is on distance

covariance between center-outward ranks and signs.

Methodologically, we are generalizing this approach in two important ways. First, we in-

troduce a class of generalized symmetric covariances (GSCs) along with their center-outward

rank versions, of which the distance covariance concepts from Deb and Sen (2021) and Shi

et al. (2021a) are but particular cases. Second, we show how considerable additional flexibil-

ity and power results from incorporating score functions in the definition. Our simulations

in Section 3.5.4 exemplify the benefits of this “score-based” approach.

From a theoretical point of view, we offer a new approach to asymptotic theory for the

proposed rank-based statistics. Indeed, handling this general class with the methods of Shi

et al. (2021a) or Deb and Sen (2021) would be highly nontrivial. Moreover, these methods

would not provide any insights into local power—an issue receiving much attention also in

other contexts (Hallin et al., 2021b; Beirlant et al., 2020; Hallin et al., 2021c, 2020). We thus

develop a completely different method, based on a general asymptotic representation result

applicable to all center-outward rank-based GSCs under the null hypothesis of independence

and contiguous alternatives of dependence. Our result (Theorem 3.5.1) is a multivariate

extension of Hájek’s classical asymptotic representation for univariate linear rank statistics

(Hájek and Šidák, 1967) and also simplifies the derivation of limiting null distributions.
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Combined with a nontrivial use of Le Cam’s third lemma in a context of non-Gaussian limits,

our approach allows for the first local power results in the area; the statistical efficiency of the

tests of Deb and Sen (2021) and Shi et al. (2021a) follows as a special case. In Proposition

3.4.2, we establish the strong consistency of our rank-based tests against any fixed alternative

under a regularity condition on the score function. Thanks to a recent result by Deb et al.

(2021), that assumption can be relaxed: our tests, thus, enjoy universal consistency against

fixed dependence alternatives.

Outline of the paper The paper begins with a review of important dependence measures

from the literature (Section 3.2). Generalizing the idea of symmetric rank covariances put

forth in Weihs et al. (2018), we show that a single formula unifies them all; we term the con-

cept generalized symmetric covariance (GSC). As further background, Section 3.3 introduces

the notion of center-outward ranks and signs. Section 3.4 presents our streamlined approach

of defining multivariate dependence measures, along with sample counterparts, and high-

lights some of their basic properties. Section 3.5 treats tests of independence and develops

a theory of asymptotic representation for center-outward rank-based GSCs (Section 3.5.1)

as well as the local power analysis of the corresponding tests against classes of quadratic

mean differentiable alternatives (Section 3.5.2). Specific alternatives are exemplified in Sec-

tion 3.5.3, and benefits of choosing standard score functions (such as normal scores) are

illustrated in the numerical study in Section 3.5.4. All proofs are deferred to the appendix.

Notation For integer m ≥ 1, put JmK := {1, 2, . . . ,m}, and let Sm be the symmetric

group, i.e., the group of all permutations of JmK. We write sgn(σ) for the sign of σ ∈ Sm.

In the sequel, the subgroup

Hm
∗ := 〈(1 4), (2 3)〉 = {(1), (1 4), (2 3), (1 4)(2 3)} ⊂ Sm (3.1.1)
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will play an important role. Here, we have made use of the cycle notation (omitting 1-cycles)

so that, e.g., (1) denotes the identity permutation and

(1 4) ≡
(

1 2 3 4 5 6 · · · m

4 2 3 1 5 6 · · · m

)
, (1 4)(2 3) ≡

(
1 2 3 4 5 6 · · · m

4 3 2 1 5 6 · · · m

)
,

where the right-hand sides are in classical two-line notation listing σ(i) below i, i ∈ JmK.

A set with distinct elements x1, . . . , xn is written either as {x1, . . . , xn} or {xi}ni=1. The

corresponding sequence is denoted by [x1, . . . , xn] or [xi]
n
i=1. An arrangement of {xi}ni=1 is

a sequence [xσ(i)]
n
i=1, where σ ∈ Sn. An r-arrangement is a sequence [xσ(i)]

r
i=1 for r ∈ JnK.

Write Inr for the family of all (n)r := n!/(n− r)! possible r-arrangements of JnK.

The set of nonnegative reals is denoted R≥0, and 0d stands for the origin in Rd. For two

vectors u,v ∈ R
d, we write u � v if u` ≤ v` for all ` ∈ JdK, and u 6� v otherwise. Let

Arc(u,v) := (2π)−1 arccos{u>v/(‖u‖‖v‖)} if u,v 6= 0d; Arc(u,v) := 0 otherwise. Here, ‖·‖

stands for the Euclidean norm. For vectors v1, . . . ,vk, we use (v1, . . . ,vk) as a shorthand

for (v>1 , . . . ,v
>
k )>. We write Id for the d× d identity matrix. For a function f : X → R, we

define ‖f‖∞ := maxx∈X |f(x)|. The symbols b·c and 1(·) stand for the floor and indicator

functions.

The cumulative distribution function and the probability distribution of a real-valued

random variable/vector Z are denoted as FZ(·) and PZ , respectively. The class of probability

measures on Rd that are absolutely continuous (with respect to the Lebesgue measure) is

denoted as Pac
d . We use  and a.s.−→ to denote convergence in distribution and almost sure

convergence, respectively. For any symmetric kernel h(·) on (Rd)m, any integer ` ∈ JmK,

and any probability measure PZ , we write h`(z1 . . . , z`; PZ) for Eh(z1 . . . , z`,Z`+1, . . . ,Zm)

where Z1, . . . ,Zm are m independent copies of Z ∼ PZ , and Eh := Eh(Z1, . . . ,Zm). The

product measure of two distributions P1 and P2 is denoted P1 ⊗ P2.
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3.2 Generalized symmetric covariances

Let X1 and X2 be two random vectors with values in Rd1 and Rd2 , respectively, and assume

throughout this paper that they are both absolutely continuous with respect to the Lebesgue

measure. Weihs et al. (2018, Def. 3) introduced a general approach to defining rank-based

measures of dependence via signed sums of indicator functions that are acted upon by sub-

groups of the symmetric group. In this section, we highlight that their resulting family of

symmetric rank covariances can be extended to cover a much wider range of dependence

measures including, in particular, the celebrated distance covariance (Székely et al., 2007).

This enables us to handle a broad family of dependence measures in the following common

standard form.

Definition 3.2.1 (Generalized symmetric covariance). A measure of dependence µ is said

to be an m-th order generalized symmetric covariance (GSC) if there exist two kernel func-

tions f1 : (Rd1)m → R≥0 and f2 : (Rd2)m → R≥0, and a subgroup H ⊆ Sm containing an

equal number of even and odd permutations such that

µ(X1,X2) = µf1,f2,H(X1,X2) := E[kf1,f2,H((X11,X21), . . . , (X1m,X2m))].

Here (X11,X21), . . . , (X1m,X2m) arem independent copies of (X1,X2), and the dependence

kernel function kf1,f2,H(·) is defined as

kf1,f2,H

(
(x11,x21), . . . , (x1m,x2m)

)
:=
{∑
σ∈H

sgn(σ)f1(x1σ(1), . . . ,x1σ(m))
}{∑

σ∈H

sgn(σ)f2(x2σ(1), . . . ,x2σ(m))
}
. (3.2.1)

As the groupH is required to have equal numbers of even and odd permutations, the order

of a GSC satisfies m ≥ 2. This requirement also justifies the term “generalized covariance”

through the following property; compare Weihs et al. (2018, Prop. 2).
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Proposition 3.2.1. All GSCs are I-consistent. More precisely, the GSC µf1,f2,H(X1,X2)

is I-consistent in the family of distributions such that E[fk] := E[fk(Xk1, . . . ,Xkm)] < ∞,

k = 1, 2, where Xk1, . . . ,Xkm are m independent copies of Xk.

The concept of GSC unifies a surprisingly large number of well-known dependence mea-

sures. We consider here five noteworthy examples, namely, the distance covariance of Székely

et al. (2007) and Székely and Rizzo (2013), the multivariate version of Hoeffding’s D based

on marginal ordering (Weihs et al., 2018, Section 2.2, p. 549), and the projection-averaging

extensions of Hoeffding’s D (Zhu et al., 2017), of Blum–Kiefer–Rosenblatt’s R (Kim et al.,

2020c, Proposition D.5), and of Bergsma–Dassios–Yanagimoto’s τ ∗ (Kim et al., 2020b, The-

orem. 7.2). Only one type of subgroup, namely, Hm
∗ := 〈(1 4), (2 3)〉 ⊆ Sm for m ≥ 4 is

needed; recall (3.1.1). For simplicity, we write w = (w1, . . . ,wm) 7→ fk(w) for the kernel

functions of an mth order multivariate GSC for which the dimension of w`, ` = 1, . . . ,m,

is dk, hence may differ for k = 1 and k = 2. Not all components of w need to have

an impact on fk(w). For instance, the kernels of distance covariance, a 4th order GSC,

map w = (w1, . . . ,w4) to R≥0 but depend neither on w3 nor w4.

Example 3.2.1 (Examples of multivariate GSCs).

(a) Distance covariance is a 4th order GSC with H = H4
∗ and

fdCov
k (w) =

1

2
‖w1 −w2‖ on (Rdk)4, k = 1, 2.

Indeed, with cd := π(1+d)/2/Γ((1 + d)/2), we have

µfdCov
1 ,fdCov

2 ,H4
∗
(X1,X2)

=
1

4
E[(‖X11 −X12‖ − ‖X11 −X13‖ − ‖X14 −X12‖+ ‖X14 −X13‖)

× (‖X21 −X22‖ − ‖X21 −X23‖ − ‖X24 −X22‖+ ‖X24 −X23‖)]

=
1

cd1cd2

∫
Rd1×Rd2

|ϕ(X1,X2)(t1, t2)− ϕX1(t1)ϕX2(t2)|2

‖t1‖d1+1‖t2‖d2+1
dt1dt2. (3.2.2)
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Identity (3.2.2) was established in Székely et al. (2007, Remark 3), Székely and Rizzo

(2009, Thm. 8), and Bergsma and Dassios (2014, Sec. 3.4);

(b) Hoeffding’s multivariate marginal ordering D is a 5th order GSC with H = H5
∗ and

fMk (w) =
1

2
1(w1,w2 � w5) on (Rdk)5, k = 1, 2,

since, by Weihs et al. (2018, Prop. 1),

µfM1 ,fM2 ,H5
∗
(X1,X2)=

∫
Rd1×Rd2

{F(X1,X2)(u1,u2)−FX1(u1)FX2(u2)}2dF(X1,X2)(u1,u2);

(c) Hoeffding’s multivariate projection-averaging D is a 5th order GSC with H = H5
∗ and

fDk (w) =
1

2
Arc(w1 −w5,w2 −w5) on (Rdk)5, k = 1, 2.

Indeed, by Zhu et al. (2017, Equation (3)), we have

µfD1 ,fD2 ,H5
∗
(X1,X2) =

∫
Sd1−1×Sd2−1

∫
R2

{F(α>1 X1,α>2 X2)(u1, u2)

− Fα>1 X1
(u1)Fα>2 X2

(u2)}2dF(α>1 X1,α>2 X2)(u1, u2)dλd1(α1)dλd2(α2),

with λd the uniform measure on the unit sphere Sd−1;

(d) Blum–Kiefer–Rosenblatt’s multivariate projection-averaging R is a 6th order GSC

with H = H6
∗ and

fR1 (w) =
1

2
Arc(w1 −w5,w2 −w5) on (Rd1)6,

fR2 (w) =
1

2
Arc(w1 −w6,w2 −w6) on (Rd2)6;

this follows from Kim et al. (2020c, Prop. D.5), who showed

µfR1 ,fR2 ,H6
∗
(X1,X2) =

∫
Sd1−1×Sd2−1

∫
R2

{F(α>1 X1,α>2 X2)(u1, u2)
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−Fα>1 X1
(u1)Fα>2 X2

(u2)}2dFα>1 X1
(u1)dFα>2 X2

(u2)dλd1(α1)dλd2(α2);

(e) Bergsma–Dassios–Yanagimoto’s multivariate projection-averaging τ ∗ is a 4th order

GSC with H = H4
∗ and

f τ
∗

k (w) = Arc(w1 −w2,w2 −w3) + Arc(w2 −w1,w1 −w4) on (Rdk)4, k = 1, 2,

since, by Kim et al. (2020b, Theorem 7.2), we have

µfτ∗1 ,fτ
∗

2 ,H4
∗
(X1,X2) =

∫
Sd1−1×Sd2−1

E{asign(α>1X11,α
>
1X12,α

>
1X13,α

>
1X14)

× asign(α>2X21,α
>
2X22,α

>
2X23,α

>
2X24)}dλd1(α1)dλd2(α2),

with asign(w1, w2, w3, w4) := sign(|w1 − w2| − |w1 − w3| − |w4 − w2|+ |w4 − w3|).

Remark 3.2.1. Sejdinovic et al. (2013) recognize distance covariance as an example of

an HSIC-type statistic (Gretton et al., 2005c,a,b; Fukumizu et al., 2007). The HSIC-type

statistics are all 4th order multivariate GSCs, and we note that our results for distance

covariance readily extend to other HSIC-type statistics.

Remark 3.2.2. In the univariate case, the GSCs from Example 3.2.1(b)–(e) reduce to the D

of Hoeffding (1948), R of Blum et al. (1961), and τ ∗ of Bergsma and Dassios (2014), respec-

tively. As shown by Drton et al. (2020), the latter is connected to the work of Yanagimoto

(1970). In Appendix B.2.1, we simplify the kernels for the univariate case, and show that

the GSC framework also covers the τ of Kendall (1938).

All the multivariate dependence measures we have introduced are D-consistent, albeit

with some variations in the families of distributions for which this holds; see, e.g., the discus-

sions in Examples 2.1–2.3 of Drton et al. (2020). As these dependence measures all involve

the group Hm
∗ , we highlight the following fact.
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Lemma 3.2.1. A GSC µ = µf1,f2,Hm
∗ with m ≥ 4 is D-consistent in a family P if and only

if the pair (f1, f2) is D-consistent in P—namely, if and only if

E
[ 2∏
k=1

{
fk(Xk1,Xk2,Xk3,Xk4,Xk5, . . . ,Xkm)− fk(Xk1,Xk3,Xk2,Xk4,Xk5, . . . ,Xkm)

−fk(Xk4,Xk2,Xk3,Xk1,Xk5, . . . ,Xkm) + fk(Xk4,Xk3,Xk2,Xk1,Xk5, . . . ,Xkm)
}]

is finite, nonnegative, and equal to 0 only if X1 and X2 are independent.

Theorem 3.2.1. All the multivariate GSCs in Example 3.2.1 are D-consistent within the

family
{

P ∈ Pac
d1+d2

∣∣EP[fk(Xk1, . . . ,Xkm)] <∞, k = 1, 2
}
(with fk, k = 1, 2 denoting their

respective kernels).

The invariance/equivariance properties of GSCs depend on those of their kernels. We

say that a kernel function f : (Rd)m → R is orthogonally invariant if, for any orthogonal

matrix O ∈ Rd×d and any w1, . . . ,wm ∈ (Rd)m, f(w1, . . . ,wm) = f(Ow1, . . . ,Owm).

Lemma 3.2.2. If f1 and f2 both are orthogonally invariant, then any GSC of the form µ =

µf1,f2,H is orthogonally invariant, i.e., µ(X1,X2) = µ(O1X1,O2X2) for any pair of random

vectors (X1,X2) and orthogonal matrices O1 ∈ Rd1×d1 and O2 ∈ Rd2×d2.

Proposition 3.2.2. The kernels (a),(c)–(e) in Example 3.2.1, hence the corresponding

GSCs, are orthogonally invariant.

Turning from theoretical dependence measures to their empirical counterparts, it is clear

that any GSC admits a natural unbiased estimator in the form of a U-statistic, which we

call the sample generalized symmetric covariance (SGSC).

Definition 3.2.2 (Sample generalized symmetric covariance). The sample generalized sym-

metric covariance of µ = µf1,f2,H is µ̂(n) = µ̂(n)([(x1i,x2i)]
n
i=1; f1, f2, H), of the form

µ̂(n) =

(
n

m

)−1 ∑
i1<i2<···<im

kf1,f2,H

(
(x1i1 ,x2i1), . . . , (x1im ,x2im)

)
,
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where kf2,f2,H is the “symmetrized” version of kf2,f2,H :

kf1,f2,H

([
(x1`,x2`)

]m
`=1

)
:=

1

m!

∑
σ∈Sm

kf1,f2,H

([
(x1σ(`),x2σ(`)

]m
`=1

)
.

If the kernels f1 and f2 are orthogonally invariant, then it also holds that all SGSCs of

the form µ̂(n)( · ; f1, f2, H) are orthogonally invariant, in the sense of remaining unaffected

when the input [(x1i,x2i)]
n
i=1 is transformed into [(O1x1i,O2x2i)]

n
i=1 where O1 ∈ Rd1×d1

and O2 ∈ Rd2×d2 are arbitrary orthogonal matrices. Proposition 3.2.2 thus also implies the

orthogonal invariance of SGSCs associated with kernels (a) and (c)–(e) in Example 3.2.1.

The SGSCs associated with the examples listed in Example 3.2.1, unfortunately, all fail to

satisfy the crucial property of distribution-freeness. However, as we will show in Section 3.4,

distribution-freeness, along with transformation invariance, can be obtained by computing

SGSCs from (functions of) the center-outward ranks and signs of the observations.

3.3 Center-outward ranks and signs

This section briefly introduces the concepts of center-outward ranks and signs to be used

in the sequel. The main purpose is to fix notation and terminology; for a comprehensive

coverage, we refer to Hallin et al. (2021a).

We are concerned with defining multivariate ranks for a sample of d-dimensional observa-

tions drawn from a distribution in the class Pac
d of absolutely continuous probability measures

on Rd with d ≥ 2. Let Sd and Sd−1 denote the open unit ball and the unit sphere in Rd,

respectively. Denote by Ud the spherical uniform measure on Sd, that is, the product of the

uniform measures on [0, 1) (for the distance to the origin) and on Sd−1 (for the direction).

The push-forward of a measure Q by a measurable transformation T is denoted as T]Q.

Definition 3.3.1 (Center-outward distribution function). The center-outward distribution

function of a probability measure P ∈ Pac
d is the P-a.s. unique function F± that (i) maps Rd
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to the open unit ball Sd, (ii) is the gradient of a convex function on Rd, and (iii) pushes P

forward to Ud (i.e., such that F±]P = Ud).

The center-outward distribution function F± of P entirely characterizes P provided that

P ∈ Pac
d ; cf. Hallin et al. (2021a, Prop. 2.1(iii)). Also, F± is invariant under shift, global

rescaling, and orthogonal transformations. We refer the readers to Appendix B.2.2 for details

about these elementary properties of center-outward distribution functions.

The sample counterpart F
(n)
± of F± is based on an n-tuple of data points z1, . . . ,zn ∈ Rd.

The key idea is to construct n grid points in the unit ball Sd such that the corresponding

discrete uniform distribution converges weakly to Ud as n→∞. For d ≥ 2, the construction

proposed in Hallin (2017, Sec. 4.2) starts by factorizing n into

n = nRnS + n0, nR, nS ∈ Z+, 0 ≤ n0 < min{nR, nS},

where in asymptotic scenarios nR and nS →∞, hence n0/n→ 0, as n→∞. Next consider

the intersection points between

– the nR hyperspheres centered at 0d, with radii r/(nR + 1), r ∈ JnRK, and

– nS rays given by distinct unit vectors {s(nS)
s }s∈JnSK that divide the unit circle into arcs

of equal length 2π/nS for d = 2, and are distributed as regularly as possible on the

unit sphere Sd−1 for d ≥ 3; asymptotic statements merely require that the discrete

uniform distribution over {s(nS)
s }nSs=1 converges weakly to the uniform distribution on

Sd−1 as nS →∞.

Letting n := (nR, nS, n0), the grid Gd
n is defined as the set of nRnS points

{
r

nR+1
s

(nS)
s

}
with r ∈ JnRK and s ∈ JnSK as described above along with the origin 0 in case n0 = 1

or, whenever n0 > 1, the n0 points
{

1
2(nR+1)

s
(nS)
s

}
, s ∈ S where S is chosen as a random

sample of size n0 without replacement from JnSK. For d = 1, letting nS = 2, nR = bn/nSc,
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n0 = n− nRnS = 0 or 1, Gd
n reduces to the points {±r/(nR + 1) : r ∈ JnRK}, along with the

origin 0 in case n0 = 1.

The empirical version F
(n)
± of F± is then defined as the optimal coupling between the

observed data points and the grid Gd
n.

Definition 3.3.2 (Center-outward ranks and signs). Let z1, . . . ,zn be distinct data points

in Rd. Let T be the collection of all bijective mappings between the set {zi}ni=1 and the

grid Gd
n= {ui}ni=1. The sample center-outward distribution function is defined as

F(n)
± := argmin

T∈T

n∑
i=1

∥∥∥zi − T (zi)
∥∥∥2

, (3.3.1)

and (nR+1)‖F(n)
± (zi)‖ and F

(n)
± (zi)/‖F(n)

± (zi)‖ are called the center-outward rank and center-

outward sign of zi, respectively.

Remark 3.3.1. The particular way the grid Gd
n is constructed here produces center-outward

ranks and signs that enjoy all the properties — uniform distributions and mutual indepen-

dence — that are expected from ranks and signs (see Section B.2.2 of the online Appendix).

These properties, however, are not required for the finite-sample validity and asymptotic

properties of the rank-based tests we are pursuing in the subsequent sections. Any sequence

of grids Gd
n, whether stochastic (defined over a different probability space than the ob-

servations) or deterministic, is fine provided that the corresponding empirical distribution

converges to the spherical uniform Ud. In addition, for the reasons developed, e.g., in Hallin

(2021), we deliberately only consider the spherical uniform Ud. In practice, the uniform dis-

tribution over the unit cube [0, 1]d could be considered as well, yielding similar tests enjoying

similar properties, with proofs following along similar lines.

The next proposition describes the Glivenko–Cantelli property of empirical center-outward

distribution functions, a result we shall heavily rely on.
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Proposition 3.3.1. (Hallin, 2017, Proposition 5.1, del Barrio et al., 2018, Theorem 3.1,

and Hallin et al., 2021a, Proposition 2.3) Consider the following classes of distributions:

• the class P+
d of distributions P ∈ Pac

d with nonvanishing probability density, namely,

with Lebesgue density f such that, for all D > 0 there exist constants λD;f < ΛD;f ∈

(0,∞) such that λD;f ≤ f(z) ≤ ΛD;f for all ‖z‖ ≤ D;

• the class P#
d of all distributions P ∈ Pac

d such that, denoting by F
(n)
± the sample distri-

bution function computed from an n-tuple Z1, . . . ,Zn of independent copies of Z ∼ P,

max
1≤i≤n

∥∥∥F(n)
± (Zi)− F±(Zi)

∥∥∥ a.s.−→ 0 as nR and nS →∞. (3.3.2)

It holds that P+
d ( P#

d ( Pac
d .

3.4 Rank-based dependence measures

We are now ready to present our proposed family of dependence measures based on the

notions of GSCs and center-outward ranks and signs. Throughout, (X1,X2) is a pair of

random vectors with PX1 ∈ Pac
d1

and PX2 ∈ Pac
d2
, and (X11,X21), (X12,X22), . . . , (X1n,X2n)

is an n-tuple of independent copies of (X1,X2). Let Fk,± denote the center-outward distri-

bution function of Xk, and write F
(n)
k,±(·) for the sample center-outward distribution function

corresponding to {Xki}ni=1, k = 1, 2.

Our ideas build on Shi et al. (2021a) and, in slightly different form, also on Deb and

Sen (2021), where the authors introduce a multivariate dependence measure by applying

distance covariance to F1,±(X1) and F2,±(X2), with a sample counterpart involving F
(n)
1,±(X1i)

and F
(n)
2,±(X2i), i ∈ JnK. Our generalization of this particular dependence measure involves

score functions and requires further notation. The score functions are continuous functions

J1, J2 : [0, 1) → R≥0. Classical examples include the normal or van der Waerden score

function JvdW(u) :=
(
F−1
χ2
d

(u)
)1/2 (with Fχ2

d
the χ2

d distribution function), the Wilcoxon score
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function JW(u) := u, and the sign test score function Jsign(u) := 1. For k = 1, 2, let Jk(u) :=

Jk(‖u‖)u/‖u‖ if u ∈ Sdk\{0dk} and 0dk if u = 0dk . Define the population and sample scored

center-outward distribution functions as Gk,±(·) := Jk(Fk,±(·)) and G
(n)
k,±(·) := Jk(F

(n)
k,±(·)),

respectively.

Definition 3.4.1 (Rank-based dependence measures). Let J1, J2 be two score functions.

The (scored) rank-based version of a dependence measure µ is obtained by applying µ to the

pair (G1,±(X1),G2,±(X2)). For a GSC µ = µf1,f2,H , the rank-based version is denoted

µ±(X1,X2) = µ±;J1,J2,f1,f2,H(X1,X2) := µf1,f2,H(G1,±(X1),G2,±(X2)) (3.4.1)

and termed a rank-based GSC for short. The associated rank-based SGSC is

W∼
(n)
µ

= W∼
(n)
J1,J2,µf1,f2,H

:= µ̂(n)
([(

G
(n)
1,±(X1i),G

(n)
2,±(X2i)

)]n
i=1

; f1, f2, H
)
. (3.4.2)

Remark 3.4.1. There is no immediate reason why a rank-based GSC should itself by a GSC

in the sense of Definition 3.2.1. In this context, an observation of Bergsma (2006, 2011) is

of interest. For distance covariance in the univariate case (equivalent to 4κ in his notation),

Lemma 10 in Bergsma (2006) implies that

1

16
µfdCov

1 ,fdCov
2 ,H4

∗
(GX1,±(X1),GX2,±(X2)) =

∫
(F(X1,X2) − FX1FX2)

2dFX1dFX2 .

In other words, for d1 = d2 = 1 and J1(u) = J2(u) = u, the rank-based distance covariance

coincides with R of Blum et al. (1961) up to a scalar multiple. Recall that R is a GSC, but

of higher order than distance covariance; see Example B.2.1(c) in Appendix B.2.1.

Plugging the center-outward ranks and signs into the multivariate dependence measures

from Section 3.2 in combination with various score functions, one immediately obtains a

large variety of rank-based GSCs and SGSCs, as we exemplify below. In particular, the

choice f1 = fdCov
1 , f2 = fdCov

2 , J1(u) = J2(u) = u, and H = H4
∗ recovers the multi-
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variate rank-based distance covariance from Shi et al. (2021a).

Example 3.4.1. Some rank-based SGSCs.

(a) Rank-based distance covariance

W∼
(n)
dCov :=

(
n

4

)−1 ∑
i1<···<i4

hdCov

((
G

(n)
1,±(X1i1),G

(n)
2,±(X2i1)

)
, . . . ,

(
G

(n)
1,±(X1i4),G

(n)
2,±(X2i4)

))
with hdCov := kfdCov

1 ,fdCov
2 ,H4

∗
as given in Example 3.2.1(a). We have by definition that

W∼
(n)
dCov =

(
n

4

)−1 ∑
i1 6=... 6=i4

1

4 · 4![{∥∥G(n)
1,±(X1i1)−G

(n)
1,±(X1i2)

∥∥− ∥∥G(n)
1,±(X1i1)−G

(n)
1,±(X1i3)

∥∥
−
∥∥G(n)

1,±(X1i4)−G
(n)
1,±(X1i2)

∥∥+
∥∥G(n)

1,±(X1i4)−G
(n)
1,±(X1i3)

∥∥}
×
{∥∥G(n)

2,±(X2i1)−G
(n)
2,±(X2i2)

∥∥− ∥∥G(n)
2,±(X2i1)−G

(n)
2,±(X2i3)

∥∥
−
∥∥G(n)

2,±(X2i4)−G
(n)
2,±(X2i2)

∥∥+
∥∥G(n)

2,±(X2i4)−G
(n)
2,±(X2i3)

∥∥}];
(b) Similarly, Hoeffding’s rank-based multivariate marginal ordering D

(
giving W∼

(n)
M

)
,

Hoeffding’s rank-based multivariate projection-averaging D
(
W∼

(n)
D

)
, Blum–Kiefer–

Rosenblatt’s rank-based multivariate projection-averaging R
(
W∼

(n)
R

)
, and Bergsma–

Dassios–Yanagimoto’s rank-based multivariate projection-averaging τ ∗
(
W∼

(n)
τ∗

)
can be

defined with kernels hM := kfM1 ,fM2 ,H5
∗
, hD := kfD1 ,fD2 ,H5

∗
, hR := kfR1 ,fR2 ,H6

∗
, and hτ∗ :=

kfτ∗1 ,fτ
∗

2 ,H4
∗
as given in Example 3.2.1, respectively.

Having proposed a general class of dependence measures, we now examine, for each rank-

based GSC, the five desirable properties listed in Section 3.1.2. To this end, we first introduce

two regularity conditions on the score functions.
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Definition 3.4.2. A score function J : [0, 1)→ R≥0 is called weakly regular if it is continuous

over [0, 1) and nondegenerate:
∫ 1

0
J2(u)du > 0. If, moreover, J is Lipschitz-continuous,

strictly monotone, and satisfies J(0) = 0, it is called strongly regular.

Proposition 3.4.1. The normal and sign test score functions are weakly but not strongly

regular; the Wilcoxon score function is strongly regular.

Proposition 3.4.2. Suppose the considered pair (X1,X2) has marginal distributions PX1 ∈

Pac
d1

and PX2 ∈ Pac
d2
. Consider any rank-based GSC µ± := µ±;J1,J2,f1,f2,H and its rank-

based SGSC W∼
(n)
µ

:= W∼
(n)
J1,J2,µf1,f2,H

as defined in (3.4.1) and (3.4.2). Further, let µ∗± :=

µ±;J1,J2,f1,f2,Hm
∗ be an instance using the group from (3.1.1). Then,

(i) (Exact distribution-freeness) Under independence ofX1 andX2, the distribution ofW∼
(n)
µ

does not depend on PX1 nor PX2;

(ii) (Transformation invariance) If the kernels f1 and f2 are orthogonally invariant, it holds

for any orthogonal matrix Ok ∈ Rdk×dk , any vector vk ∈ Rdk , and any scalar ak ∈ R>0

that µ±(X1,X2) = µ±
(
v1 + a1O1X1,v2 + a2O2X2

)
;

(iii) (I- and D-Consistency)

(a) µ± is I-consistent in the family

{
P(X1,X2)

∣∣PXk
∈ Pac

dk
and E

[
fk
(
[Gk,±(Xki)]

m
i=1

)]
<∞ for k = 1, 2

}
;

(b) If the pair of kernels is D-consistent in the class

{
P(X1,X2) ∈ Pac

d1+d2

∣∣E[fk(Xk1, . . . ,Xkm)
]
<∞ for k = 1, 2

}
(cf. Lemma 3.2.1), then µ∗± is D-consistent in the family

Pac
d1,d2,∞ :=

{
P(X1,X2) ∈ Pac

d1+d2

∣∣E[fk([Gk,±(Xki)]
m
i=1

)]
<∞ for k = 1, 2

}
(3.4.3)



56

provided that the score functions J1 and J2 are strictly monotone;

(iv) (Strong consistency) If fk
(
[G

(n)
k,±(Xki`)]

m
`=1

)
and fk

(
[Gk,±(Xki`)]

m
`=1

)
are almost surely

bounded, that is, if there exists a constant C (depending on fk, Jk, and PXk
) such that

for any n and k = 1, 2,

P
( ∣∣fk([G(n)

k,±(Xki`)
]m
`=1

)∣∣ ≤ C
)

= 1 = P
( ∣∣fk([Gk,±(Xki`)

]m
`=1

)∣∣ ≤ C
)
,

and

(n)−1
m

∑
[i1,...,im]∈Inm

∣∣∣fk([G(n)
k,±(Xki`)

]m
`=1

)
− fk

([
Gk,±(Xki`)

]m
`=1

)∣∣∣ a.s.−→ 0, (3.4.4)

then

W∼
(n)
µ

= W∼
(n)
J1,J2,µf1,f2,H

a.s.−→ µ±(X1,X2). (3.4.5)

Theorem 3.4.1 (Examples). As long as PX1 ∈ P
#
d1
, PX2 ∈ P

#
d2
, and J1, J2 are strongly

regular, all the kernel functions in Example 3.2.1(a)–(e) satisfy Condition (3.4.4).

Remark 3.4.2. Unfortunately, Theorem 3.4.1 does not imply that the rank-based SGSCs

with normal score functions satisfy (3.4.5) although, in view of Proposition 3.4.2(iii), their

population counterparts are both I- and D-consistent within a fairly large nonparametric

family of distributions. A weaker version (replacing a.s. convergence by convergence in

probability) of (3.4.5) holds in the univariate case with d1 = d2 = 1 by Feuerverger (1993,

Sec. 6). Consistency for normal scores, however, follows from a recent and yet unpublished

result of Deb et al. (2021, Proposition 4.3), which was not available to us at the time this

paper was written and which is obtained via a completely different technique.

We conclude this section with a discussion of computational issues. Two steps, in the eval-

uation of multivariate rank-based SGSCs, are potentially costly: (i) calculating the center-

outward ranks and signs in (3.3.1), and (ii) computing a GSC µ̂(n)(·) with n inputs. The
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optimal matching problem (3.3.1) yielding [G
(n)
1,±(X1i)]

n
i=1 and [G

(n)
2,±(X2i)]

n
i=1 can be solved

in O(n5/2 log(nN)) time if the costs ‖zi−uj‖2, i, j ∈ JnK are integers bounded by N (Gabow

and Tarjan, 1989); in dimension d = 2, this can improved to O(n3/2+δ log(N)) time for some

arbitrarily small constant δ > 0 (Sharathkumar and Agarwal, 2012). The problem can also

be solved approximately in O(n3/2Ω(n, ε,∆)) time if d ≥ 3, where

Ω(n, ε,∆) := ε−1τ(n, ε) log4(n/ε) log(∆)

depends on n, ε (the accuracy of the approximation) and ∆ := max cij/min cij, with τ(n, ε)

a small term (Agarwal and Sharathkumar, 2014). Further details are deferred to Ap-

pendix B.2.3.

Once [G
(n)
1,±(X1i)]

n
i=1 and [G

(n)
2,±(X2i)]

n
i=1 are obtained, a naïve evaluation of W∼

(n), on the

other hand, requires O(nm) operations. Great speedups are possible, however, in particular

cases such as the rank-based SGSCs from Example 3.4.1. A detailed summary is provided in

Proposition B.2.4 of the Appendix. The total computational complexity of the five statistics

in Example 3.4.1 is given in the last three rows of Table 3.1.

3.5 Local power of rank-based tests of independence

Besides quantifying the dependence between two groups of random variables, the rank-based

GSCs from Section 3.4 allow for constructing tests of the null hypothesis

H0 : X1 and X2 are mutually independent,

based on a sample (X11,X21), . . . , (X1n,X2n) of n independent copies of (X1,X2). Shi et al.

(2021a), and, in a slightly different manner, Deb and Sen (2021), studied the particular case

of a test based on the Wilcoxon version of the rank-based distance covarianceW∼
(n)
dCov. Among

other results, they derive the limiting null distribution of W∼
(n)
dCov, using combinatorial limit

theorems and “brute-force” calculation of permutation statistics. Although this led to a fairly
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general combinatorial non-central limit theorem (Shi et al., 2021a, Theorems 4.1 and 4.2),

the derivation is not intuitive and difficult to generalize. In contrast, in this paper, we take

a new and more powerful approach to the asymptotic analysis of rank-based SGSCs, which

resolves the following three main issues:

(i) Intuitively, the asymptotic behavior of rank-based dependence measures follows from

that of their Hájek asymptotic representations, which are oracle versions in which the

observations are transformed using the unknown actual center-outward distribution

function F± rather than its sample version F
(n)
± . Here, we show the correctness of

this intuition by proving asymptotic equivalence between rank-based SGSCs and their

oracle versions.

(ii) Previous work does not perform any power analysis for the new rank-based tests.

Here, we fill this gap by proving that these tests have nontrivial power in the context

of the class of quadratic mean differentiable alternatives (Lehmann and Romano, 2005,

Def. 12.2.1).

(iii) Finally, our rank-based tests allow for the incorporation of score functions, which may

improve their performance.

This novel approach rests on a generalization of the classical Hájek representation method

(Hájek and Šidák, 1967) to the multivariate setting of center-outward ranks and signs, which

simplifies the derivation of asymptotic null distributions and, via a nontrivial use of Le Cam’s

third lemma for non-normal limits, enables our local power analysis.

3.5.1 Asymptotic representation

In order to develop our multivariate asymptotic representation, we first introduce formally

the oracle counterpart to the rank-based SGSC W∼
(n)
µ

.
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Definition 3.5.1 (Oracle rank-based SGSCs). The oracle version of the rank-based SGSC

W∼
(n)
J1,J2,µf1,f2,H

associated with the GSC µ = µf1,f2,H is

W (n)
µ = W

(n)
J1,J2,µf1,f2,H

:= µ̂(n)
([(

G1,±(X1i),G2,±(X2i)
)]n
i=1

; f1, f2, H
)
.

Note that the oracle W (n)
µ cannot be computed from the observations as it involves the

population scored center-outward distribution functions G1,± and G2,±. However, the limiting

null distribution of W (n), unlike that of W∼
(n), follows from standard theory for degenerate

U-statistics (Serfling, 1980, Chap. 5.5.2). This point can be summarized as follows.

Proposition 3.5.1. Let µ = µf1,f2,Hm
∗ be a GSC with m ≥ 4. Let the kernels f1, f2 and the

score functions J1, J2 satisfy

0 < Var(gk(Wk1,Wk2)) <∞, k = 1, 2, (3.5.1)

where Wki := Jk(Uki) with (U1i,U2i), i ∈ JmK independent and distributed according to the

product of spherical uniform distributions Ud1 ⊗ Ud2,

gk(wk1,wk2) := E
[
2fk,Hm

∗

(
wk1,wk2,Wk3,Wk4, . . . ,Wkm

)]
, (3.5.2)

and fk,Hm
∗ :=

∑
σ∈Hm

∗
sgn(σ)fk(xkσ(1), . . . ,xkσ(m)), k = 1, 2. Then, under the null hypothe-

sis H0 that X1 ∼ PX1 ∈ Pac
d1

and X2 ∼ PX2 ∈ Pac
d2

are independent,

nW (n)
µ = nW

(n)
J1,J2,µf1,f2,Hm∗

 
∞∑
v=1

λµ,v(ξ
2
v − 1),

where [ξv]
∞
v=1 are independent standard Gaussian random variables and [λµ,v]

∞
v=1 are the non-

zero eigenvalues of the integral equation

E
[
g1(w11,W12)g2(w21,W22)ψ(W12,W22)

]
= λψ(w11,w21). (3.5.3)

The tests we are considering reject for large values of test statistics that estimate a
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nonnegative (I- and D-)consistent dependence measure. In all these tests

all eigenvalues of the integral equation (3.5.3) are non-negative. (3.5.4)

However, it should be noted that, in view of the following multivariate representation result,

a valid test of H0 can be implemented also when (3.5.4) does not hold.

Theorem 3.5.1 (Multivariate Hájek representation). Let f1, f2 be kernel functions of or-

der m ≥ 4, and let J1, J2 be weakly regular score functions. Writing U
(n)
dk

for the discrete

uniform distribution over the grid Gdk
n , let W (n)

ki := Jk(U
(n)
ki ) where (U

(n)
1i ,U

(n)
2i ) for i ∈ JmK

are independent with distribution U
(n)
d1
⊗ U

(n)
d2

. Define gk, k = 1, 2, as in (3.5.2), and

g
(n)
k (wk1,wk2) := E

[
2fk,Hm

∗

(
wk1,wk2,W

(n)
k3 ,W

(n)
k4 , . . . ,W

(n)
km

)]
, k = 1, 2. (3.5.5)

Assume that

fk and gk are Lipschitz-continuous, g
(n)
k converges uniformly to gk, (3.5.6)

sup
i1,...,im∈JmK

E[fk([Wki` ]
m
`=1)2] <∞, and

∫ 1

0

J2
k (u)du <∞, k = 1, 2.

Then, under the hypothesis H0 that X1 ∼ PX1 ∈ Pac
d1

and X2 ∼ PX2 ∈ Pac
d2

are independent,

the rank-based SGSC W∼
(n)
µ

= W∼
(n)
J1,J2,µ

associated to the GSC µ = µf1,f2,Hm
∗ is asymptotically

equivalent to its oracle version W (n)
µ , i.e., W∼

(n)
µ
−W (n)

µ = oP(n−1) as nR, nS →∞.

Theorem 3.5.2. The conclusion of Theorem 3.5.1 still holds with (3.5.6) replaced by

fk is uniformly bounded, and almost everywhere continuous, k = 1, 2. (3.5.7)

Proposition 3.5.2 (Examples). If X1 ∼ PX1 ∈ Pac
d1

is independent of X2 ∼ PX2 ∈ Pac
d2

and J1, J2 are weakly regular, then the kernel functions from Example 3.2.1(b)–(e) sat-

isfy (3.5.1), (3.5.4), and (3.5.7). If, moreover, J1, J2 are square-integrable (viz.,
∫ 1

0
J2
k (u)du <

∞ for k = 1, 2), then (3.5.1), (3.5.4), and (3.5.6) hold also for the kernels in Exam-
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ple 3.2.1(a).

Corollary 3.5.1 (Limiting null distribution). Suppose the conditions in Proposition 3.5.1

and Theorem 3.5.1 hold. Then, for µ = µf1,f2,Hm
∗ with m ≥ 4, under the hypothesis H0 that

X1 ∼ PX1 ∈ Pac
d1

and X2 ∼ PX2 ∈ Pac
d2

are independent,

nW∼
(n)
µ

= nW∼
(n)
J1,J2,µf1,f2,Hm∗

 
∞∑
v=1

λµ,v(ξ
2
v − 1) (3.5.8)

with [λµ,v]
∞
v=1 and [ξv]

∞
v=1 as defined in Proposition 3.5.1.

Remark 3.5.1. Corollary 3.5.1 gives no rate, i.e., no Berry–Esséen type bound for the con-

vergence in (3.5.8). Indeed, deriving such bounds in the present context is quite challenging.

Results for the univariate case with d1 = d2 = 1 were established for simpler statistics

such as Spearman’s ρ and Kendall’s τ by Koroljuk and Borovskich (1994, Chap. 6.2) and,

more recently, by Pinelis and Molzon (2016). Extending these results to the multivariate

measure-transportation-based ranks considered here is highly nontrivial and requires prop-

erties of empirical transports that have not yet been obtained. This pertains, in particular,

to working out the rate of convergence in the Glivenko–Cantelli result for the center-outward

distribution function given in (3.3.2); an open problem in the recent survey by Hallin (2021,

Section 5).

For any significance level α ∈ (0, 1), define the quantile

qµ,1−α := inf
{
x ∈ R : P

( ∞∑
v=1

λµ,v(ξ
2
v − 1) ≤ x

)
≥ 1− α

}
, (3.5.9)

where [λµ,v]
∞
v=1 and [ξv]

∞
v=1 are as in Proposition 3.5.1. Let W∼

(n)
µ

be as in Theorem 3.5.1, and

define the test

T(n)
µ,α := 1

(
nW∼

(n)
µ

> qµ,1−α
)
.

The next proposition summarizes the asymptotic validity and properties of this test.
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Proposition 3.5.3 (Uniform validity and consistency). Let J1, J2 be weakly regular score

functions, and let µ = µf1,f2,Hm
∗ be a GSC with m ≥ 4 such that Conditions (3.5.1) and one

of (3.5.6) and (3.5.7) hold. Then,

(i) limn→∞ P(T
(n)
µ,α = 1) = α for any P ∈ Pac

d1
⊗ Pac

d2
, i.e., for X1 and X2 independent

with X1 ∼ PX1 ∈ Pac
d1

and X2 ∼ PX2 ∈ Pac
d2
;

(ii) it follows from Proposition 3.4.2(i) that limn→∞ supP∈P#
d1
⊗P#

d2

P(T
(n)
µ,α = 1) = α;

(iii) if, moreover, the pair of kernels (f1, f2) is D-consistent, J1, J2 are strictly monotone,

and (3.4.5) holds, limn→∞ P(T
(n)
µ,α = 1) = 1 for any fixed alternative P(X1,X2) ∈ Pac

d1,d2,∞

as defined in (3.4.3).

3.5.2 Local power analysis

In this section, we conduct local power analyses of the proposed tests for quadratic mean dif-

ferentiable classes of alternatives (Lehmann and Romano, 2005, Def. 12.2.1), for which we es-

tablish nontrivial power in n−1/2 neighborhoods. We begin with a model {qX(x; δ)}|δ|<δ∗ with

δ∗ > 0, under which X = (X1,X2) has Lebesgue-density qX(x; δ) = q(X1,X2)

(
(x1,x2); δ

)
,

with qX1(x1; δ) and qX2(x2; δ) being the marginal densities. We then make the following

assumptions.

Assumption 3.5.1.

(i) Dependence of X1 and X2: qX(x; δ) = qX1(x1; δ)qX2(x2; δ) holds if and only if δ = 0.

(ii) The family {qδ(x)}|δ|<δ∗ is quadratic mean differentiable at δ = 0 with score func-

tion ˙̀(·; 0), that is,∫ (√
qX(x; δ)−

√
qX(x; 0)− 1

2
δ ˙̀(x; 0)

√
qX(x; 0)

)2

dx = o(δ2) as δ → 0.

(iii) The Fisher information is positive, i.e., IX(0) :=
∫
{ ˙̀(x; 0)}2qX(x, 0)dx > 0; of note,

Assumption 3.5.1(ii) implies that IX(0) <∞ and
∫

˙̀(x; 0)qX(x, 0)dx = 0.
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(iv) The score function ˙̀(x; 0) is not additively separable, i.e., there do not exist functions h1

and h2 such that ˙̀(x; 0) = h1(x1) + h2(x2).

Remark 3.5.2. For the sake of simplicity, we have restricted ourselves to one-parameter

classes. Analogous results hold for families indexed by a multivariate parameter δ.

For a local power analysis, we consider a sequence of local alternatives obtained as

H
(n)
1 (δ0) : δ = δ(n), where δ(n) := n−1/2δ0 (3.5.10)

with some constant δ0 6= 0. In this local model, testing the null hypothesis of independence

reduces to testing H0 : δ0 = 0 versus H1 : δ0 6= 0.

Theorem 3.5.3 (Power analysis). Consider a GSC µ = µf1,f2,Hm
∗ with m ≥ 4 and kernel

functions f1, f2 picked from Example 3.2.1. Assume that J1, J2 are weakly regular score

functions that satisfy the assumptions of Proposition 3.5.2. Then if Assumption 3.5.1 holds,

for any β > 0, there exists a constant Cβ > 0 depending only on β such that, as long

as |δ0| > Cβ, limn→∞ P
{
T

(n)
µ,α = 1

∣∣H(n)
1 (δ0)

}
≥ 1− β.

Following the arguments from the proof of Theorem 3.5.3, one should be able to obtain

similar local power results for the original (non-rank-based) tests associated with the kernels

listed in Example 3.2.1. However, to the best of our knowledge, this analysis has not been

performed in the literature, except for d1 = d2 = 1 where results can be found, e.g., in Dhar

et al. (2016) and Shi et al. (2021b). We also emphasize that, although Theorem 3.5.3 only

considers the specific cases listed also in Example 3.4.1, the proof technique applies more

generally. We refrain, however, from stating a more general version of Theorem 3.5.3 as this

would require a number of tedious technical conditions.

Combined with the following result, Theorem 3.5.3 yields nontrivial power of the proposed

tests in n−1/2 neighborhoods of δ = 0.
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Theorem 3.5.4. Let Assumption 3.5.1 hold. Then, for any β > 0 such that α + β < 1,

there exists an absolute constant cβ > 0 such that, as long as |δ0| ≤ cβ,

inf
T
(n)
α ∈T

(n)
α

P
{
T

(n)

α = 0
∣∣H(n)

1 (δ0)
}
≥ 1− α− β

for all sufficiently large n. Here the infimum is taken over the class T (n)
α of all size-α tests.

Table 3.1 summarizes our results for the rank-based SGSCs from Example 3.4.1 by giving

an overview of the five properties listed in the Introduction. It also indicates consistency of

the tests. In all cases, it is assumed that the score functions involved are weakly regular.

3.5.3 Examples in the quadratic mean differentiable class

This section presents two specific examples in the quadratic mean differentiable class that

satisfy Assumption 3.5.1. First, we consider parametrized families that extend the bivariate

Konijn alternatives (Konijn, 1956). These alternatives are classical in the context of test-

ing for multivariate independence and have also been considered by Gieser (1993), Gieser

and Randles (1997), Taskinen et al. (2003, 2004), Taskinen et al. (2005), and Hallin and

Paindaveine (2008).

Konijn families are constructed as follows. Let X∗1 ∼ PX∗1 ∈ P
ac
d1

and X∗2 ∼ PX∗2 ∈ P
ac
d2

be two (without loss of generality) mean zero (unobserved) independent random vectors

with densities q1 and q2, respectively. Let G∗1,± and G∗2,± denote their respective population

scored center-outward distribution functions, PX∗ ∈ Pac
d1+d2

their joint distribution, qX∗(x) =

qX∗((x1,x2)) = q1(x1)q2(x2) their joint density. Define, for δ ∈ R,

X =

(
X1

X2

)
:=

(
Id1 δM1

δM2 Id2

)(
X∗1

X∗2

)
= Aδ

(
X∗1

X∗2

)
= AδX

∗, (3.5.11)

where M1 ∈ Rd1×d2 and M2 ∈ Rd2×d1 are two deterministic matrices. For δ = 0, the

matrix Aδ is the identity and, thus, invertible. By continuity, Aδ is also invertible for δ
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in a sufficiently small neighborhood Θ of 0. For δ ∈ Θ, the density of X can be expressed

as qX(x; δ) =
∣∣ det(Aδ)

∣∣−1
qX∗(A

−1
δ x), which is differentiable with respect to δ. The following

additional assumptions will be made on the generating scheme (3.5.11).

Assumption 3.5.2.

(i) The distributions ofX have a common support for all δ ∈ Θ. Without loss of generality,

we assume X := {x : qX(x; δ) > 0} does not depend on δ.

(ii) The map x 7→
√
qX∗(x) is continuously differentiable.

(iii) The Fisher information IX(0) :=
∫
{ ˙̀(x; 0)}2qX(x; 0)dx of X relative to δ at δ = 0 is

strictly positive and finite.

Example 3.5.1.

(i) SupposeX∗1 andX∗2 are elliptical with centers 0d1 and 0d2 and covariances Σ1 and Σ2,

respectively, that is, qk(xk) ∝ φk

(
x>k Σ−1

k xk

)
, k = 1, 2, where φk is such that Var(X∗k) =

Σk and E [‖Z∗k‖2ρk(‖Z∗k‖2)2] < ∞, k = 1, 2 where Z∗k has density function propor-

tional to φk(‖zk‖2) and ρk(t) := φ′k(t)/φk(t). Then Assumption 3.5.2 is satisfied for

any M1,M2 such that Σ1M
>
2 + M1Σ2 6= 0.

(ii) As a specific example of (i), if X∗1 and X∗2 are centered multivariate normal or follow

centered multivariate t-distributions with degrees of freedom strictly greater than two,

then Assumption 3.5.2 is satisfied for any M1,M2 such that Σ1M
>
2 + M1Σ2 6= 0.

Next, consider the following mixture model extending the alternatives treated in Dhar

et al. (2016, Sec. 3). Let q1 and q2 be fixed (Lebesgue-)density functions for X1 an X2,

respectively. The joint density of X = (X1,X2) under independence is q1q2. Letting q∗ 6=

q1q2 denote a fixed joint density, mixture alternatives indexed by δ ∈ [0, 1] are defined as

qX(x; δ) := (1− δ)q1q2 + δq∗.
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Assumption 3.5.3. It is assumed that

(i) (1 + δ∗)q1q2 − δ∗q∗ is a bonafide joint density for some δ∗ > 0;

(ii) q∗ and q1q2 are mutually absolutely continuous;

(iii) the function δ 7→
√
qX(x; δ) is continuously differentiable in some neighborhood of 0;

(iv) the Fisher information IX(δ) :=
∫

(q∗ − q1q2)2/{(1− δ)q1q2 + δq∗}dx of X relative to

δ is finite, strictly positive, and continuous at δ = 0;

(v) ˙̀(x; 0) = q∗(x)/{q1(x1)q2(x2)} − 1 is not additively separable.

Example 3.5.2. If qk(xk) = 1 for xk ∈ [0, 1]dk , k = 1, 2, and q∗(x) 6≡ 1 is continuous and

supported on [0, 1]d1+d2 , then Assumption 3.5.3 holds.

Proposition 3.5.4. Assumption 3.5.1 is satisfied by the Konijn alternatives under Assump-

tion 3.5.2, and by the mixture alternatives under Assumption 3.5.3.

3.5.4 Numerical experiments

Extensive simulations of Shi et al. (2021a) give evidence for the superiority, under non-

Gaussian densities, of the Wilcoxon versions of our tests over the original distance covariance

tests. That superiority is more substantial when non-Wilcoxon scores, such as the Gaussian

ones, are considered (Figure 3.4). In view of these results, there is little point in pursuing

simulations with non-Gaussian densities, and we instead focus on Gaussian cases (Figures

3.1–3.3) to study the impact on finite-sample performance of the dimensions d1 and d2,

sample size n, and within- and between-sample correlations.

Example 3.5.3. The data are a sample of n independent copies of the multivariate normal
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vector (X1,X2) in Rd1+d2 , with mean zero and covariance matrix Σ, where

Σij = Σji =



1, i = j,

τ, i = 1, j = 2,

ρ, i = 1, j = d1 + 1,

0, otherwise.

Here τ characterizes the within-group correlation and we consider (a) τ = 0, (b) τ = 0.5,

and (c) τ = 0.9. Independence holds if and only if ρ, a between-group correlation, is zero.

Example 3.5.4. The data are n independent copies of (X1,X2) with X1i = Qt(1)(Φ(X∗1i))

and X2j = Qt(1)(Φ(X∗2j)) for i ∈ Jd1K and j ∈ Jd2K; here Qt(1) denotes the quantile function of

the standard Cauchy distribution and (X∗1 ,X
∗
2 ) is generated according to Example 3.5.3(b).

We compare the empirical performance of the following five tests:

(i) permutation test using the original distance covariance (Székely and Rizzo, 2013);

(ii) permutation test applying original distance covariance to marginal ranks (Lin, 2017);

(iii) center-outward rank-based distance covariance test with Wilcoxon scores and critical

values from the asymptotic distribution (Shi et al., 2021a);

(iv) new center-outward rank-based distance covariance test with normal scores and critical

values from the asymptotic distribution;

(v) likelihood ratio test in the Gaussian model (Anderson, 2003, Chap. 9.3.3 & 8.4.4).

The parametric test (v) is tailored for Gaussian densities and plays the role of a benchmark.

Unsurprisingly, in the Gaussian experiments in Figures 3.1–3.3, it uniformly outperforms

tests (i)-(iv). See Figure 3.4 for its unsatisfactory performance for non-Gaussian densities.

Figures 3.1–3.4 report empirical powers (rejection frequencies) of these five tests, based

on 1, 000 simulations with nominal significance level 0.05, dimensions d1 = d2 ∈ {2, 3, 5, 7},
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and sample size n ∈ {216, 432, 864, 1728}. The parameter ρ in the true covariance matrix

takes values ρ ∈ {0, 0.005, . . . , 0.15}. The critical values for tests (i) and (ii) were computed

on the basis of n random permutations. For tests (iii) and (iv), to determine the critical

values from the asymptotic distribution given in Corollary 3.5.1, we numerically compute the

eigenvalues by adopting the same strategy as in Shi et al. (2021a, Sec. 5.2); see also Lyons

(2013, p. 3291).

It is evident from Figure 3.4 that, in non-Gaussian experiments, the potential benefits of

rank-based tests are huge, particularly so when Gaussian scores are adopted (note the very

severe bias of the Gaussian likelihood ratio test as d increases). In Gaussian experiments, the

performance of the normal score–based test (iv) is uniformly better than that of its Wilcoxon

score counterpart (iii); that superiority increases with the dimension and decreases with the

within-group dependence τ . The superiority of both center-outward rank-based tests (iii)

and (iv) over the traditional distance covariance one and its marginal rank version is quite

significant for high values of the within-group correlation τ .

The way the normal-score rank-based test (and also the Wilcoxon-score one) outperforms

the original distance covariance test may come as a surprise. However, the original distance

covariance does not yield a Gaussian parametric test but rather a nonparametric test for

which there is no reason to expect superiority over its rank-based versions in Gaussian set-

tings. In a different context, we have long been used to the celebrated Chernoff–Savage

phenomenon that normal-score rank statistics may (uniformly) outperform their pseudo-

Gaussian counterparts (Chernoff and Savage, 1958). This is best known in the context of

two-sample location problems; see, however, Hallin (1994), Hallin and Paindaveine (2008),

and Deb et al. (2021) for Chernoff–Savage results for linear time series (traditional univariate

ranks and correlogram-based pseudo-Gaussian procedures) and vector independence (Maha-

lanobis ranks and signs under elliptical symmetry and Wilks’ test as the pseudo-Gaussian

procedure; measure-transportation-based ranks under elliptical symmetry or independent
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component assumptions). Although the present context is different, their superiority is an-

other example in which restricting to rank-based methods brings distribution-freeness at no

substantial cost in terms of efficiency/power.

3.6 Conclusion

This paper provides a general framework for specifying dependence measures that leverage

the new concept of center-outward ranks and signs. The associated independence tests have

the strong appeal of being fully distribution-free. Via the use of a flexible class of generalized

symmetric covariances and the incorporation of score functions, our framework allows one to

construct a variety of consistent dependence measures. This, as our numerical experiments

demonstrate, can lead to significant gains in power.

The theory we develop facilitates the derivation of asymptotic distributions yielding easily

computable approximate critical values. The key result is an asymptotic representation that

also allows us to establish, for the first time, a nontrivial local power result for tests of vector

independence based on center-outward ranks and signs.
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Figure 3.1: Empirical powers of the five competing tests in Example 3.5.3(a) (τ = 0, no
within-group correlation). The y-axis represents rejection frequencies based on 1,000 repli-
cates, the x-axis represents ρ (the between-group correlation), and the blue, green, red, and
gold lines represent the performance of (i) Szekely and Rizzo’s original distance covariance
test, (ii) Lin’s marginal rank version of the distance covariance test, (iii) Shi–Drton–Han’s
center-outward Wilcoxon version of the distance covariance test, (iv) the center-outward
normal-score version of the distance covariance test, and (v) the likelihood ratio test, respec-
tively.
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Figure 3.2: Empirical powers of the five competing tests in Example 3.5.3(b) (τ = 0.5,
moderate within-group correlation). The y-axis represents rejection frequencies based on
1,000 replicates, the x-axis represents ρ (the between-group correlation), and the blue, green,
red, and gold lines represent the performance of (i) Szekely and Rizzo’s original distance
covariance test, (ii) Lin’s marginal rank version of the distance covariance test, (iii) Shi–
Drton–Han’s center-outward Wilcoxon version of the distance covariance test, (iv) the center-
outward normal-score version of the distance covariance test, and (v) the likelihood ratio test,
respectively.
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Figure 3.3: Empirical powers of the five competing tests in Example 3.5.3(c) (τ = 0.9,
high within-group correlation). The y-axis represents rejection frequencies based on 1,000
replicates, the x-axis represents ρ (the between-group correlation), and the blue, green,
red, and gold lines represent the performance of (i) Szekely and Rizzo’s original distance
covariance test, (ii) Lin’s marginal rank version of the distance covariance test, (iii) Shi–
Drton–Han’s center-outward Wilcoxon version of the distance covariance test, (iv) the center-
outward normal-score version of the distance covariance test, and (v) the likelihood ratio test,
respectively.
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Figure 3.4: Empirical powers of the five competing tests in Example 3.5.4. The y-axis rep-
resents rejection frequencies based on 1,000 replicates, the x-axis represents ρ (the between-
group correlation), and the blue, green, red, and gold lines represent the performance of (i)
Szekely and Rizzo’s original distance covariance test, (ii) Lin’s marginal rank version of the
distance covariance test, (iii) Shi–Drton–Han’s center-outward Wilcoxon version of the dis-
tance covariance test, (iv) the center-outward normal-score version of the distance covariance
test, and (v) the likelihood ratio test, respectively.
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Chapter 4

ON THE POWER OF CHATTERJEE’S RANK CORRELATION

4.1 Introduction

Let X1, X2 be two real-valued random variables defined on a common probability space. We

will be concerned with testing the null hypothesis

H0 : X1 and X2 are independent, (4.1.1)

based on a sample from the joint distribution of (X1, X2). This classical problem has seen

revived interest in recent years as independence tests constitute a key component in modern

statistical methodology such as, e.g., methods for causal discovery (Maathuis et al., 2019,

Section 18.6.3).

The problem of testing independence has been examined from a number of different

perspectives; see, for example, the work of Meynaoui et al. (2019), Berrett et al. (2021),

and Kim et al. (2020a), and the references therein. In this paper, our focus will be on

testing H0 via rank correlations that measure ordinal association. Rank correlations are

particularly attractive for continuous distributions for which they are distribution-free under

H0. Early proposals of rank correlations include the widely-used ρ of Spearman (1904) and τ

of Kendall (1938), but also the footrule of Spearman (1906), the γ of Gini (1914), and the β

of Blomqvist (1950). Unfortunately, all five of these rank correlations fail to give a consistent

test of independence. Indeed, each correlation coefficient consistently estimates a population

correlation measure that takes the same value under H0 and certain fixed alternatives to H0.

This fact leads to trivial power at such alternatives.
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In order to arrive at a consistent test of independence, Hoeffding (1948) proposed a cor-

relation measure that, for absolutely continuous bivariate distributions, vanishes if and only

if H0 holds. Blum et al. (1961) considered a modification that is consistent against all de-

pendent bivariate alternatives (cf. Hoeffding, 1940). Bergsma and Dassios (2014) proposed

a new test of independence and showed its consistency for bivariate distributions that are

discrete, absolutely continuous, or a mixture of both types. As pointed out by Drton et al.

(2020), mere continuity of the marginal distribution functions is sufficient for consistency of

their test. This follows from a relation discovered by Yanagimoto (1970) who implicitly con-

siders the correlation of Bergsma and Dassios (2014) when proving a conjecture of Hoeffding

(1948).

All three aforementioned correlation measures admit natural efficient estimators in the

form of U-statistics that depend only on ranks. However, in each case, the U-statistic is

degenerate and has a non-normal asymptotic distribution under H0. In light of this fact, it

is interesting that Dette et al. (2013) were able to construct a consistent correlation measure

ξ which is also able to detect perfect functional dependence (see also Gamboa et al., 2018)

and in a recent paper that received much attention, Chatterjee (2021) gives a very simple

rank correlation, with no tuning parameter involved, that surprisingly estimates ξ and has

an asymptotically normal null distribution.

This paper compares Chatterjee’s and also Dette–Siburg–Stoimenov’s rank correlation

coefficients to the three obvious competitors given by the D of Hoeffding (1948), the R of

Blum et al. (1961), and the τ ∗ of Bergsma and Dassios (2014). Our comparison considers

three criteria:

(i) Statistical consistency of the independence test. A correlation measure µ assigns to each

joint distribution of (X1, X2) a real number µ(X1, X2). Such a correlation measure is

consistent in a family of distributions F if for all pairs (X1, X2) with joint distribution

in F , it holds that µ(X1, X2) = 0 if and only if X1 is independent of X2. Correlation
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measures that are consistent within a large nonparametric family are able to detect

non-linear, non-monotone relationship, and facilitate consistent tests of independence.

If a correlation measure µ is consistent, then the consistency of tests of independence

based on an estimator µn of µ is guaranteed by the consistency of that estimator.

(ii) Computational efficiency. Computing ranks requires O(n log n) time. With a view

towards large-scale applications, we prioritize rank correlation coefficients that are

computable without much additional effort, that is, also in O(n log n) time. This

is easily seen to be the case for Chatterjee’s coefficient but, as we shall survey in

Section 4.2, recent advances clarify that D, R, and τ ∗ can be computed similarly

efficiently.

(iii) Statistical efficiency of the independence test. Our final criterion is optimal efficiency

in the statistical sense (Nikitin, 1995, Section 5.4). To assess this, we use different local

alternatives inspired from work of Konijn (1956) and of Farlie (1960, 1961); the latter

type of alternatives was further developed in Dhar et al. (2016). We then call an inde-

pendence test rate-optimal (or rate sub-optimal) against a family of local alternatives

if within this family the test achieves the detection boundary up to constants (or not).

The main contribution of this paper pertains to statistical efficiency. Chatterjee’s deriva-

tion of asymptotic normality for his rank correlation coefficient relies on a reformulation of

his statistic and then invoking a type of permutation central limit theorem that was estab-

lished in Chao et al. (1993). We found that a direct use of this technique to analyse the

local power is hard. In recent related work we were able to overcome a similar issue in a

related multivariate setting (Shi et al., 2021a; Deb and Sen, 2021) by developing a suitable

Hájek representation theory (Shi et al., 2020). Applying this philosophy here, we build a

particular form of the projected statistic that was introduced in Angus (1995) to provide

an alternative proof of Theorem 2.1 in Chatterjee (2021) that gives an asymptotic repre-
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sentation. Integrating the representation into Le Cam’s third lemma and employing further

a version of the conditional multiplier central limit theorem (cf. Chapter 2.9 in van der

Vaart and Wellner, 1996), we are then able to show that the test based on Chatterjee’s rank

correlation coefficient is in fact rate sub-optimal against the two considered local alternative

families; recall point (iii) above. Our theoretical analysis thus echos Chatterjee’s empirical

observation, that is, his test of independence can suffer from low power; see Remark 4.3.4

below. In contrast, the tests based on the more established coefficients D, R, and τ ∗ are

all rate-optimal for all considered local alternative families. We therefore consider the latter

more suitable for testing independence than Chatterjee’s test. On the other hand, the test

based on Dette–Siburg–Stoimenov’s coefficient is empirically observed to have non-trivial

power against certain alternatives in finite-sample simulations. A theoretical study of this

phenomenon, however, has to be left to the future due to involved technical difficulties. The

proofs of our claims, including details on examples, are given in the supplementary material.

As we were completing the manuscript, we became aware of independent work by Cao and

Bickel (2020), who accomplished a similar local power analysis for Chatterjee’s correlation

coefficient and presented a result that is similar to our Theorem 4.3.1, Claim (4.3.5). The

local alternatives considered in their paper are, however, different from ours. In addition,

the two papers differ in their focus. The work of Cao and Bickel concentrates on correlation

measures that are 1 if and only if one variable is a shape-restricted function of the other

variable, while our interest is in comparing consistent tests of independence.

4.2 Rank correlations and independence tests

4.2.1 Considered rank correlations and their computation

When considering correlations, we will use the term correlation measure to refer to population

quantities, which we write using Greek or Latin letters. The term correlation coefficient is

reserved for sample quantities, which are written with an added subscript n. The symbol
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F denotes a joint bivariate distribution function for the considered pair of random variables

(X1, X2), and F1 and F2 are the respective marginal distribution functions. Throughout,

(X11, X21), . . . , (X1n, X2n) is a sample comprised of n independent copies of (X1, X2).

We now introduce in precise terms the five types of rank correlations we consider in

this paper. We begin by specifying the correlation measure and coefficients from Chatterjee

(2021) and Dette et al. (2013). To this end, let (X1[1], X2[1]), . . . , (X1[n], X2[n]) be a rearrange-

ment of the sample such that X1[1] ≤ · · · ≤ X1[n], with ties, if existing, broken at random.

Define

r[i] :=
n∑
j=1

1
(
X2[j] ≤ X2[i]

)
(4.2.1)

with I(·) representing the indicator function, and `[i] :=
∑n

j=1 1(X2[j] ≥ X2[i]). We emphasize

that if F2 is continuous, then there are almost surely no ties among X21, . . . , X2n, in which

case r[i] is simply the rank of X2[i] among X2[1], . . . , X2[n].

Definition 4.2.1. The correlation coefficient of Chatterjee (2021) is

ξn := 1−
n
∑n−1

i=1 |r[i+1] − r[i]|
2
∑n

i=1 `[i](n− `[i])
. (4.2.2)

If there are no ties among X21, . . . , X2n, it holds that

ξn = 1−
3
∑n−1

i=1 |r[i+1] − r[i]|
n2 − 1

.

Chatterjee (2021) proved that ξn estimates the correlation measure

ξ :=

∫
Var[E{1(X2 ≥ x) | X1}]dF2(x)∫

Var{1(X2 ≥ x)}dF2(x)
.

This measure was in fact first proposed in Dette et al. (2013); cf. r(X, Y ) in their Theorem 2.

We thus term ξ the Dette–Siburg–Stoimenov’s rank correlation measure.

We note that ξ was also considered by Gamboa et al. (2018); see the Cramér–von Mises

index Sv2,CVM before their Properties 3.2. For estimation of ξ, Dette et al. (2013) proposed



80

the following coefficient; denoted r̂n in their Equation (15).

Definition 4.2.2. Let K be a symmetric and twice continuously differentiable kernel with

compact support, and let K(x) :=
∫ x
−∞K(t)dt. Let h1, h2 > 0 be bandwidths that are chosen

such that they tend to zero with

nh3
1 →∞, nh4

1 → 0, nh4
2 → 0, nh1h2 →∞ (4.2.3)

as n→∞. Define

ζn
(
u1, u2

)
:=

1

nh1

n∑
i=1

K
(u1 − i/n

h1

)
K
(u2 − r[i]/n

h2

)
(4.2.4)

with r[i] as in (4.2.1). Then the Dette–Siburg–Stoimenov’s correlation coefficient is

ξ∗n := 6

∫ 1

0

∫ 1

0

{
ζn
(
u1, u2

)}2
du1du2 − 2.

Next we introduce two classical rank correlations of Hoeffding (1948) and Blum et al.

(1961), both of which assess dependence in a very intuitive way by integrating squared devi-

ations between the joint distribution function and the product of the marginal distribution

functions.

Definition 4.2.3. Hoeffding’s correlation measure is defined as

D :=

∫ {
F
(
x1, x2

)
− F1

(
x1

)
F2

(
x2

)}2

dF
(
x1, x2

)
.

It is unbiasedly estimated by the correlation coefficient

Dn :=
1

n(n− 1) · · · (n− 4)

∑
i1 6=... 6=i5

1

4[{
1
(
X1i1 ≤ X1i5

)
− 1

(
X1i2 ≤ X1i5

)}{
1
(
X1i3 ≤ X1i5

)
− 1

(
X1i4 ≤ X1i5

)}]
[{
1
(
X2i1 ≤ X2i5

)
− 1

(
X2i2 ≤ X2i5

)}{
1
(
X2i3 ≤ X2i5

)
− 1

(
X2i4 ≤ X2i5

)}]
, (4.2.5)
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which is a rank-based U-statistic of order 5.

Definition 4.2.4. Blum–Kiefer–Rosenblatt’s correlation measure is defined as

R :=

∫ {
F
(
x1, x2

)
− F1

(
x1

)
F2

(
x2

)}2

dF1

(
x1

)
dF2

(
x2

)
.

It is unbiasedly estimated by the Blum–Kiefer–Rosenblatt’s correlation coefficient

Rn :=
1

n(n− 1) · · · (n− 5)

∑
i1 6=... 6=i6

1

4[{
1
(
X1i1 ≤ X1i5

)
− 1

(
X1i2 ≤ X1i5

)}{
1
(
X1i3 ≤ X1i5

)
− 1

(
X1i4 ≤ X1i5

)}]
[{
1
(
X2i1 ≤ X2i6

)
− 1

(
X2i2 ≤ X2i6

)}{
1
(
X2i3 ≤ X2i6

)
− 1

(
X2i4 ≤ X2i6

)}]
, (4.2.6)

which is a rank-based U-statistic of order 6.

More recently, Bergsma and Dassios (2014) introduced the following rank correlation,

which is connected to work by Yanagimoto (1970). We refer the reader to Bergsma and

Dassios (2014) for a motivation via con-/disconcordance of 4-point patterns and connections

to Kendall’s tau.

Definition 4.2.5. Write 1(x1, x2 < x3, x4) := 1(max{x1, x2} < min{x3, x4}). The Bergsma–

Dassios–Yanagimoto’s correlation measure is

τ ∗ := 4P
(
X11, X13 < X12, X14 , X21, X23 < X22, X24

)
+ 4P

(
X11, X13 < X12, X14 , X22, X24 < X21, X23

)
− 8P

(
X11, X13 < X12, X14 , X21, X24 < X22, X23

)
.

It is unbiasedly estimated by a U-statistic of order 4, namely, the Bergsma–Dassios–Yanagimoto’s

correlation coefficient

τ ∗n :=
1

n(n− 1)(n− 2)(n− 3)

∑
i1 6=... 6=i4
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{
1
(
X1i1 , X1i3 < X1i2 , X1i4

)
+ 1
(
X1i2 , X1i4 < X1i1 , X1i3

)
− 1

(
X1i1 , X1i4 < X1i2 , X1i3

)
− 1

(
X1i2 , X1i3 < X1i1 , X1i4

)}
{
1
(
X2i1 , X2i3 < X2i2 , X2i4

)
+ 1
(
X2i2 , X2i4 < X2i1 , X2i3

)
− 1

(
X2i1 , X2i4 < X2i2 , X2i3

)
− 1

(
X2i2 , X2i3 < X2i1 , X2i4

)}
. (4.2.7)

Remark 4.2.1 (Relation between Dn, Rn, and τ ∗n). As conveyed by Equation (6.1) in Drton

et al. (2020), as long as n ≥ 6 and there are no ties in the data, it holds that 12Dn+24Rn = τ ∗n.

Consequently, 12D + 24R = τ ∗ given continuity but not necessarily absolute continuity of

F ; compare page 62 of Yanagimoto (1970).

At first sight the computation of the different correlation coefficients appears to be of

very different complexity. However, this is not the case due to recent developments, which

yield nearly linear computation time for all coefficients except ξ∗n.

Proposition 4.2.1 (Computational efficiency). If data have no ties, then ξn, Dn, Rn, and

τ ∗n can all be computed in O(n log n) time.

Proof. It is evident from its simple form that ξn can be computed in O(n log n) time (Chat-

terjee, 2021, Remark 4). The result about Dn is due to Hoeffding (1948, Section 5); see also

Weihs et al. (2018, page 557). The claim about τ ∗n is based on recent new methods due to

Even-Zohar and Leng (2021, Corollary 1.3) and Even-Zohar (2020b, Theorem 6.1); for an

implementation see Even-Zohar (2020a). The claim about Rn then follows from the relation

given in Remark 4.2.1.

Remark 4.2.2 (Computation of ξ∗n). The definition of ξ∗n involves an integral over the unit

square [0, 1]2. How quickly the integral can be computed depends on smoothness properties of

the considered kernel and the bandwidth choice. Chatterjee (2021, Remark 5) suggests a time

complexity of O(n5/3). Indeed, for a symmetric and four times continuously differentiable
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kernel K that has compact support, there is a choice of bandwidths h1, h2 that satisfies the

requirements of Definition 4.2.2 and for which ξ∗n can be approximated with an absolute error

of order o(n−1/2) in O(n5/3) time.

To accomplish this we may choose h1 = h2 = n−1/4−ε for small ε > 0 and apply Simpson’s

rule to the two-dimensional integral in the definition of ξ∗n. By assumptions onK, the function

ζ2
n has continuous and compactly supported fourth partial derivatives that are bounded by

a constant multiple of h−5
1 . The error of Simpson’s rule applied with a grid of M2 points in

[0, 1]2 is then O(h−5
1 /M4). With M2 = O(h

−5/2
1 n1/4+ε/2) = O(n7/8+3ε), this error becomes

O(n−1/2−ε) = o(n−1/2). Due to the compact support of K, one evaluation of ζn requires

O(nh1) operations. The overall computational time is thus O(nh1M
2) = O(n13/8+2ε), which

is O(n5/3) as long as ε ≤ 1/48.

Remark 4.2.3 (Computation with ties). When the data can be considered as generated

from a continuous distribution but featuring a small number of ties due to rounding, then

ad-hoc breaking of ties poses little problem. In contrast, if ties arise due to discontinuity of

the data-generating distribution, then the situation is more subtle. In this case, Chatterjee’s

ξn is to be computed in the form from (4.2.2), but the computational time clearly remains

O(n log n). In contrast, ξ∗n is no longer a suitable estimator of ξ. Hoeffding’s formulas for Dn

continue to apply with ties, keeping the computation at O(n log n) but, as we shall emphasize

in Section 4.4, the estimated D may lose some of its appeal. Bergsma–Dassios–Yanagimoto’s

τ ∗n is suitable also for discrete data, but the available implementations that explicitly account

for data with ties (Weihs, 2019) are based on the O(n2 log n) algorithm of Weihs et al. (2016,

Sec. 3) or the slighly more memory intensive but faster O(n2) algorithm of Heller and Heller

(2016b, Sec. 2.2). Computation of Rn with ties is also O(n2) (Weihs et al., 2018; Weihs,

2019).
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4.2.2 Consistency

In the rest of this section as well as in Section 4.3, we will always assume that the joint

distribution function F is continuous, though not necessarily jointly absolutely continuous

with regard to the Lebesgue measure. Accordingly, both X11, . . . , X1n and X21, . . . , X2n are

free of ties with probability one. To clearly state the following results, we introduce three

families of bivariate distributions specified via their joint distribution function F :

Fc :=
{
F : F is continuous as a bivariate function

}
,

F ac :=
{
F : F is absolutely continuous with regard to the Lebesgue measure

}
,

FDSS :=
{
F ∈ Fc : F has a copula C(u1, u2) that is three and two times continuously

differentiable with respect to the arguments u1 and u2, respectively
}
. (4.2.8)

Recall that the copula of F satisfies F (x1, x2) = C{F1(x1), F2(x2)}.

We first discuss the large-sample consistency of the correlation coefficients as estimators

of the corresponding correlation measures. Convergence in probability is denoted p−→.

Proposition 4.2.2 (Consistency of estimators). For any F ∈ Fc and n→∞, we have

ξn
p−→ ξ, Dn

p−→ D, Rn
p−→ R, and τ ∗n

p−→ τ ∗.

If in addition F ∈ FDSS and K,h1, h2 satisfy all assumptions stated in Definition 4.2.2, then

also ξ∗n
p−→ ξ.

Proof. The claim about ξn is Theorem 1.1 in Chatterjee (2021), and the one about ξ∗n is

proved in the supplement Section C.1.1 based on a revised version of Theorem 3 in Dette et al.

(2013). The remaining claims are immediate from U-statistics theory (e.g., Proposition 1 in

Weihs et al., 2018, Theorem 5.4.A in Serfling, 1980).

Next, we turn to the correlation measures themselves. It is clear that ξ, D, and R
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are always nonnegative, and that the same is true for τ ∗ when applied to F ∈ Fc; this

follows from Remark 4.2.1. The consistency properties for continuous observations can be

summarized as follows.

Proposition 4.2.3 (Consistency of correlation measures). Each one of the correlation mea-

sures ξ, R, and τ ∗ is consistent for the entire class Fc, that is, if F ∈ Fc, then ξ = 0 (or

R = 0 or τ ∗ = 0) if and only if the pair (X1, X2) is independent. Hoeffding’s D is consistent

for Fac but not Fc.

Proof. The consistency of ξ is Theorem 2 of Dette et al. (2013), and Theorem 1.1 of Chatter-

jee (2021). The consistency of R is shown in detail in Theorem 2 of Weihs et al. (2018); see

also p. 490 in Blum et al. (1961). The consistency of τ ∗ was established for Fac in Theorem 1

in Bergsma and Dassios (2014), and that for Fc can be shown via Remark 4.2.1; compare

Theorem 6.1 of Drton et al. (2020). Finally, the claim about D follows from Theorem 3.1 of

Hoeffding (1948) and its generalization in Proposition 3 of Yanagimoto (1970).

4.2.3 Independence tests

For large samples, computationally efficient independence tests may be implemented using

the asymptotic null distributions of the correlation coefficients, which are summarized below.

We use  to denote convergence in distribution.

Proposition 4.2.4 (Limiting null distributions). Suppose F ∈ Fc has X1 and X2 indepen-

dent. As n→∞, it holds that

(i) for Chatterjee’s correlation coefficient ξn, n1/2ξn  N(0, 2/5) (Theorem 2.1 in Chat-

terjee, 2021);

(ii) for Dette–Siburg–Stoimenov’s correlation coefficient ξ∗n, n1/2ξ∗n
p−→ 0 assuming that

F ∈ FDSS and K,h1, h2 satisfy all assumptions stated in Definition 4.2.2 (revised
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version of Theorem 3 in Dette et al., 2013; see Section C.1.2 of the supplementary

material);

(iii) for µ ∈ {D,R, τ ∗},

nµn  
∞∑

v1,v2=1

λµv1,v2

(
ξ2
v1,v2
− 1
)
,

where

λµv1,v2 =

1/(π4v2
1v

2
2) when µ = D,R,

36/(π4v2
1v

2
2) when µ = τ ∗,

for v1, v2 = 1, 2, . . . , and {ξv1,v2} as independent standard normal random variables

(Proposition 7 in Weihs et al., 2018, Proposition 3.1 in Drton et al., 2020).

For a given significance level α ∈ (0, 1), let z1−α/2 be the (1−α/2)-quantile of the standard

normal distribution. Then the asymptotic test based on Chatterjee’s ξn is

T ξnα := 1
{
n1/2|ξn| > (2/5)1/2 · z1−α/2

}
.

The tests based on µn with µ ∈ {D,R, τ ∗} take the form

T µnα := 1
(
nµn > qµ1−α

)
, qµ1−α := inf

[
x : P

{ ∞∑
v1,v2=1

λµv1,v2

(
ξ2
v1,v2
− 1
)
≤ x

}
≥ 1− α

]
,

where λµv1,v2 and ξv1,v2 , v1, v2 = 1, . . . , n, . . . were presented in Proposition 4.2.4. We note

that Weihs (2019) gives a routine to compute the needed quantiles. It is unclear how to

implement the test based on Dette–Siburg–Stoimenov’s ξ∗n without the need for simulation

or permutation as a non-degenerate limiting null distribution is currently unknown.

Given the distribution-freeness of ranks for the class Fc, Proposition 4.2.4 yields uni-

form asymptotic validity of the tests just defined. Moreover, Propositions 4.2.2–4.2.3 yield

consistency at fixed alternatives. We summarize these facts below.

Proposition 4.2.5 (Uniform validity and consistency of tests). The tests based on the
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correlation coefficients µn ∈ {ξn, Dn, Rn, τ
∗
n} are uniformly valid in the sense that

lim
n→∞

sup
F∈Fc

P(T µnα = 1 | H0) = α. (4.2.9)

Moreover, these tests are consistent, i.e., for fixed F ∈ Fc such that X1 and X2 are dependent

and µn ∈ {ξn, Rn, τ
∗
n}, it holds that

lim
n→∞

P(T µnα = 1 | H1) = 1. (4.2.10)

The conclusion (4.2.10) holds for µn = Dn if assuming further that F ∈ F ac.

4.3 Local power analysis

This section investigates the local power of the four rank correlation-based tests of H0 in-

troduced in Section 4.2.3. To this end, we consider two classical and well-used families of

alternatives to the null hypothesis of independence: rotation alternatives (Konijn alterna-

tives; Konijn, 1956) and mixture alternatives (Farlie-type alternatives; Farlie, 1960, 1961; see

also Dhar et al., 2016).

(A) Rotation alternatives. Let Y1 and Y2 be two real-valued independent random vari-

ables that have mean zero and are absolutely continuous with Lebesgue-densities f1 and f2,

respectively. For ∆ ∈ (−1, 1), consider

X =

(
X1

X2

)
:=

(
1 ∆

∆ 1

)(
Y1

Y2

)
= A∆

(
Y1

Y2

)
= A∆Y . (4.3.1)

For all ∆ ∈ (−1, 1), the matrix A∆ is clearly full rank and invertible. For any ∆ ∈ (−1, 1),

let fX(x; ∆) denote the density of X = A∆Y . We then make the following assumptions on

Y1, Y2.

Assumption 4.3.1. It holds that
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(i) the distributions of X have a common support for all ∆ ∈ (−1, 1), so that without loss

of generality X := {x : fX(x; ∆) > 0} is independent of ∆;

(ii) the density fk is absolutely continuous with non-constant logarithmic derivative ρk :=

f ′k/fk, k = 1, 2;

(iii) the Fisher information of X relative to ∆ at the point 0, denoted IX(0), is strictly

positive, and E{(Yk)2} <∞, E[{ρk(Yk)}2] <∞ for k = 1, 2.

Remark 4.3.1. Assumption 4.3.1(ii),(iii) implies E{ρk(Yk)} = 0 and IX(0) <∞.

Example 4.3.1. Suppose fk(z) is absolutely continuous and positive for all real numbers z,

k = 1, 2. If

E
(
Yk
)

= 0, E
{(
Yk
)2}

<∞, E
[{
ρk
(
Yk
)}2]

<∞, for k = 1, 2, (4.3.2)

then Assumption 4.3.1 holds. As a special case, Assumption 4.3.1 holds if Y1 and Y2 are

centred and follow normal distributions or t-distributions with not necessarily integer-valued

degrees of freedom greater than two.

(B) Mixture alternatives. Consider the following mixture alternatives that were used

in Dhar et al. (2016, Sec. 3). Let F1 and F2 be fixed univariate distribution functions

that are absolutely continuous with Lebesgue-density functions f1 and f2, respectively. Let

F0

(
x1, x2

)
= F1

(
x1

)
F2

(
x2

)
be the product distribution function yielding independence, and

let G 6= F0 be a fixed bivariate distribution function that is absolutely continuous and such

that (X1, X2) are dependent under G. Let the density functions of F0 and G, denoted by

f0 and g, respectively, be continuous and have compact supports. Then define the following

alternative model for the distribution of X = (X1, X2):

FX := (1−∆)F0 + ∆G, (4.3.3)

with 0 ≤ ∆ ≤ 1.
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We make the following additional assumptions on F0 and G.

Assumption 4.3.2. It holds that

(i) the distribution G is absolutely continuous with respect to F0 and s(x) := g(x)/f0(x)−1

is continuous;

(ii) the conditional expectation E{s(Y )|Y1} = 0 almost surely for Y = (Y1, Y2) ∼ F0;

(iii) the function s is not additively separable, i.e., there do not exist univariate functions

h1 and h2 such that s(x) = h1(x1) + h2(x2);

(iv) the Fisher information IX(0) > 0.

Remark 4.3.2. In this model, g(x)/f0(x) is continuous and has compact support, which

guarantees that IX(0) <∞.

Example 4.3.2. (Farlie alternatives) Let G in (4.3.3) be given as

G
(
x1, x2

)
= F1

(
x1

)
F2

(
x2

)[
1 +

{
1− F1

(
x1

)}{
1− F2

(
x2

)}]
.

Then Assumption 4.3.2 is satisfied (Morgenstern, 1956; Gumbel, 1958; Farlie, 1960). Notice

also that E{s(Y )|Y2} = 0 almost surely for Y = (Y1, Y2) ∼ F0.

Example 4.3.3. Let the density f2 be symmetric around 0, and consider two univariate

functions h1 and h2 that are both non-constant and bounded by 1 in magnitude, with h2

additionally being an odd function. Let f1 be a density such that
∫
f1(x1)h1(x1)dx1 6=

0. Then the bivariate density g can be chosen such that s(x) = h1(x1)h2(x2) and then

Assumption 4.3.2 holds. For example, we can take f1(t) = f2(t) = 1/2 × 1(−1 ≤ t ≤ 1),

h1(t) = |1 − 2Ψ(t)|, and h2(t) = 1 − 2Ψ(t), where Ψ denotes the distribution function of

the uniform distribution on [−1, 1]. In this case, E{s(Y )|Y2} is not almost surely zero for

Y = (Y1, Y2) ∼ F0.
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For a local power analysis in any one of the two considered alternative families, we

examine the asymptotic power along a respective sequence of alternatives obtained as

H1,n(∆0) : ∆ = ∆n, where ∆n := n−1/2∆0 (4.3.4)

with some constant ∆0 > 0. We obtain the following results on the discussed tests.

Theorem 4.3.1 (Power analysis). Suppose the considered sequences of local alternatives are

formed such that Assumption 4.3.1 or 4.3.2 holds when considering a family of type (A) or

(B), respectively. Then concerning any sequence of alternatives given in (4.3.4),

(i) for any one of the two types of alternatives (A) or (B), and any fixed constant ∆0 > 0,

lim
n→∞

P{T ξnα = 1 | H1,n(∆0)} = α; (4.3.5)

(ii) for any local alternative family and any number β > 0, there exists some sufficiently

large constant Cβ > 0 only depending on β such that, as long as ∆0 > Cβ,

lim
n→∞

P{T µnα = 1 | H1,n(∆0)} ≥ 1− β, (4.3.6)

where µn ∈ {Dn, Rn, τ
∗
n}.

In contrast to Theorem 4.3.1, Proposition 4.3.1 below shows that the power of any size-α

test can be arbitrarily close to α when ∆0 is sufficiently small in the local alternative model

H1,n(∆0). This result combined with (4.3.5) and (4.3.6) manifests that the size-α tests based

on one of Dn, Rn, τ
∗
n are rate-optimal against the considered local alternatives, while the

size-α test based on Chatterjee’s correlation coefficient, with only trivial power against the

local alternative model H1,n(∆0) for any fixed ∆0, is rate sub-optimal.

Proposition 4.3.1 (Rate-optimality). Concerning any one of the two local alternative fam-

ilies and any sequence of alternatives given in (4.3.4), as long as the corresponding Assump-
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tion 4.3.1 or 4.3.2 holds, we have that for any number β > 0 satisfying α+β < 1 there exists

a constant cβ > 0 only depending on β such that

inf
Tα∈Tα

P{Tα = 0 | H1,n(cβ)} ≥ 1− α− β

for all sufficiently large n. Here the infimum is taken over all size-α tests.

Remark 4.3.3. Assumptions 4.3.1 and 4.3.2 are technical conditions imposed to ensure that

(i) the two considered sequences of alternatives are all locally asymptotically normal (van der

Vaart, 1998, Chapter 7), i.e., the log likelihood ratio processes admit a quadratic expansion;

(ii) the conditional expectation of the score function given the first margin is almost surely

zero. Here the second requirement was invoked to allow for a use of the conditional multiplier

central limit theorem (cf. Chapter 2.9 in van der Vaart and Wellner, 1996) that appears to

be the key in analysing the power of Chatterjee’s correlation coefficient. In addition to their

generality, we would like to emphasize that these technical assumptions are indeed satisfied

by important models such as Gaussian rotation and Farlie alternatives, which are commonly

used to investigate local power of independence tests.

Remark 4.3.4. We note that the linear, step function, W-shaped, sinusoid, and circular

alternatives considered in Chatterjee (2021, Section 4.3) can all be viewed as generalized

rotation alternatives. The proof techniques used in this paper are hence directly applicable

to these five alternatives by means of a re-parametrization. To illustrate this point, consider,

for example, the following alternative motivated by Chatterjee (2021, Section 4.3):

X1 = Y1 and X2 = ∆g(Y1) + Y2, (4.3.7)

where Y1 and Y2 are independent and absolutely continuous with respective densities f1, f2.

Notice that model (4.3.7) and the one used in Chatterjee (2021, Section 4.3) are equivalent

for rank-based tests as ranks are scale invariant. Assume then that
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(i) the distributions of X = (X1, X2) have a common support for all ∆ ∈ (−1, 1);

(ii) the density f2 is absolutely continuous with non-constant logarithmic derivative ρ2 :=

f ′2/f2 with 0 < E[{ρ2(Y2)}2] <∞;

(iii) the function g is non-constant and measurable such that 0 < E[{g(Y1)}2] <∞.

Claims (4.3.5) and (4.3.6) will then hold for the alternatives (4.3.7) in observation of argu-

ments similar to those made in the proof of Theorem 4.3.1 for the rotation alternatives (A).

Remark 4.3.5. Cao and Bickel (2020, Section 4.4) performed a local power analysis for

Chatterjee’s ξn under a set of assumptions that differs from ours. The goal of our local

power analysis was to exhibit explicitly the, at times surprising, differences in power of the

independence tests given by the four rank correlation coefficients from Definitions 4.2.1,

4.2.3–4.2.5. To this end, we focused on rotation and mixture alternatives from the literature.

However, from the proof techniques in Section C.1.8 of the supplementary material, it is

evident that Claims (4.3.5) and (4.3.6) hold for further types of local alternative families.

For the former claim, which concerns lack of power of Chatterjee’s ξn, this point has been

pursued in Section 4.4 of Cao and Bickel (2020).

4.4 Rank correlations for discontinuous distributions

In this section, we drop the continuity assumption of F made in Sections 4.2–4.3, and allow

for ties to exist with a nonzero probability. Among the five correlation coefficients, ξ∗n is

no longer an appropriate estimator when F is not continuous. We will only discuss the

properties of the other four estimators ξn, Dn, Rn, and τ ∗n.

Recall that the computation issue has been address in Remark 4.2.3. Our first result in

this section focuses on approximation consistency of the correlation coefficients ξn, Dn, Rn

and τ ∗n to their population quantities. To this end, we define the families of distribution more
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general than the ones considered so far as follows:

F :=
{
F : F is a bivariate distribution function

}
,

F∗ :=
{
F : F2 is not degenerate, i.e., F2(x) 6= I(x ≥ x0) for any real number x0

}
,

F τ∗ :=
{
F : F is discrete, continuous, or a mixture of

discrete and jointly absolutely continuous distribution functions
}
. (4.4.1)

For the estimators ξn, Dn, Rn, and τ ∗n, the following result on consistency can be given.

Proposition 4.4.1 (Consistency of estimators). As n→∞, we have

(i) for F ∈ F∗, ξn converges in probability to ξ (Theorem 1.1 in Chatterjee, 2021);

(ii) for F ∈ F , µn converges in probability to µ for µ ∈ {D,R, τ ∗} (Proposition 1 in Weihs

et al., 2018, Theorem 5.4.A in Serfling, 1980).

The following proposition is a generalization of Proposition 4.2.3.

Proposition 4.4.2 (Consistency of correlation measures). The following are true:

(i) for F ∈ F∗, ξ ≥ 0 with equality if and only if the pair is independent (Theorem 1.1 in

Chatterjee, 2021);

(ii) for F ∈ F , D ≥ 0; for F ∈ F ac, D = 0 if and only if the pair is independent

(Theorem 3.1 in Hoeffding, 1948, Proposition 3 in Yanagimoto, 1970);

(iii) for F ∈ F , R ≥ 0 with equality if and only if the pair is independent (page 490 of Blum

et al., 1961);

(iv) for F ∈ F τ∗, τ ∗ ≥ 0 where equality holds if and only if the variables are independent

(Theorem 1 in Bergsma and Dassios, 2014, Theorem 6.1 in Drton et al., 2020).
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The asymptotic distribution theory from Section 4.2.3 can also be extended. As the

continuity requirement is dropped, the central limit theorems for Chatterjee’s ξn still holds.

However, the asymptotic variance now has a more complicated form and is not necessarily

constant across the null hypothesis of independence (Theorem 2.2 in Chatterjee, 2021). A

similar phenomenon arises for the limiting null distributions of Dn, Rn and τ ∗n when one

or two marginals are not continuous; see Theorem 4.5 and Corollary 4.1 in Nandy et al.

(2016) for further discussion. As a result, permutation analysis, which is unfortunately

computationally much more intensive, is typically invoked to implement a test outside the

realm of continuous distributions.

4.5 Simulation results

In order to further examine the power of the tests, we simulate data as a sample comprised

of n independent copies of (X1, X2), for which we consider a suite of different specifications

based on mixture, rotation, and generalized rotation alternatives.

Example 4.5.1. For the distribution of (X1, X2) we choose the six alternatives. In their

specification, Y1 and Y2 are always independent random variables and ∆ = n−1/2∆0.

(a) The pair (X1, X2) is given by the rotation alternative (4.3.1), where Y1, Y2 are both

standard Gaussian and ∆0 = 2. This is an instance of our Example 4.3.1.

(b) The pair (X1, X2) is given by the mixture alternative (4.3.3), where

F0

(
x1, x2

)
= Ψ

(
x1

)
Ψ
(
x2

)
,

G
(
x1, x2

)
= Ψ

(
x1

)
Ψ
(
x2

)[
1 +

{
1−Ψ

(
x1

)}{
1−Ψ

(
x2

)}]
,

Ψ(·) denotes the distribution function of the uniform distribution on [−1, 1], and ∆0 =

10. This is in accordance with our Example 4.3.2.
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(c) The pair (X1, X2) is given by the mixture alternative (4.3.3), where the density func-

tions of F and G, denoted by f0 and g, are given by

f0

(
x1, x2

)
= ψ

(
x1

)
ψ
(
x2

)
,

g
(
x1, x2

)
= ψ

(
x1

)
ψ
(
x2

)[
1 +

∣∣1− 2Ψ
(
x1

)∣∣{1− 2Ψ
(
x2

)}]
,

ψ(t) = 1/2× 1(−1 ≤ t ≤ 1), and ∆0 = 20. This is an instance of our Example 4.3.3.

(d) The pair (X1, X2) is given by the generalized rotation alternative (4.3.7), where Y1 is

uniformly distributed on [−1, 1], Y2 is standard Gaussian, g takes values −3, 2, −4, and

−3 in the intervals [−1,−0.5), [−0.5, 0), [0, 0.5), and [0.5, 1], respectively, and ∆0 = 3.

(e) The pair (X1, X2) is given by (4.3.7), where Y1 is uniformly distributed on [−1, 1], Y2

is standard Gaussian, g(t) = |t+ 0.5|1(t < 0) + |t− 0.5|1(t ≥ 0), and ∆0 = 60.

(f) The pair (X1, X2) is given by (4.3.7), where Y1 is uniformly distributed on [−1, 1], Y2

is standard Gaussian, g(t) = cos(2πt), and ∆0 = 12.

As indicated, the first three simulation settings are taken from Examples 4.3.1–4.3.3.

The latter three are motivated by step function, W-shaped, and sinusoid settings in which

Chatterjee’s correlation coefficient performs well; see Chatterjee (2021, Section 4.3).

Our focus is on comparing the empirical performance of the five tests T ξnα , T ξ
∗
n
α , TDnα ,

TRnα , T τ
∗
n
α . The first four tests are conducted using the asymptotics from Proposition 4.2.4.

The last test is implemented with bandwidths chosen as h1 = h2 = n−3/10 following the

suggestion in Section 6.1 of Dette et al. (2013) and using a finite-sample critical value, which

we approximate via 1000 Monte Carlo simulations. The nominal significance level is set

to 0.05, and the sample size is chosen as n ∈ {500, 1000, 5000, 10000}. For each of the six

settings and four sample sizes, we conduct 1000 simulations.

Before turning to statistical properties, we contrast the computation times for calculating

the five considered rank correlation coefficients first. Table 4.1 shows times in the considered
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Table 4.1: A comparison of computation time for all the five correlation statistics. The
computation time here is the total time in seconds of 1000 replicates.

n ξn ξ∗n Dn Rn τ ∗n

500 0.157 12.57 0.158 0.263 0.253
1000 0.239 33.75 0.267 0.505 0.468
5000 1.655 401.4 1.823 3.601 3.087
10000 3.089 1152.6 3.315 7.607 7.132

rotation setting (a); the results for other settings are essentially the same. The calculations

of ξn and ξ∗n are by our own implementation, and those of Dn, Rn, τ ∗n are made using the

functions .calc.hoeffding(), .calc.refined(), and .calc.taustar() from R package

independence (Even-Zohar, 2020a), respectively. All experiments are conducted on a lap-

top with a 2.6 GHz Intel Core i5 processor and a 8 GB memory. One observes the clear

computational advantages of ξn, Dn, Rn, and τ ∗n over Dette et al. (2013)’s estimator ξ∗n.

The difference in computation time between Chatterjee’s coefficient ξn and Hoeffding’s Dn is

insignificant. Both ξn and Dn are slightly faster to compute than Blum–Kiefer–Rosenblatt’s

Rn and Bergsma–Dassios–Yanagimoto’s τ ∗n; computation times differ by a factor less than

2.5.

Table 4.2 shows the empirical powers of the five tests. The results confirm our earlier

theoretical claims on the powers of the different tests in the different models, that Hoeffd-

ing’s D, Blum–Kiefer–Rosenblatt’s R, and Bergsma–Dassios–Yanagimoto’s τ ∗ outperform

Chatterjee’s correlation coefficient in all the settings considered. Interestingly, the simula-

tion results suggest that the test based on ξ∗n may have non-trivial power against certain

alternatives; see results for Example 4.5.1(e),(f) in Table 4.2.
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Table 4.2: Empirical powers of the five competing tests in Example 4.5.1. The empirical
powers here are based on 1000 replicates.

n ξn ξ∗n Dn Rn τ ∗n ξn ξ∗n Dn Rn τ ∗n

Results for Example 4.5.1(a) Results for Example 4.5.1(d)
500 0.103 0.178 0.954 0.955 0.957 0.443 0.122 0.913 0.921 0.919
1000 0.067 0.106 0.956 0.956 0.956 0.285 0.111 0.923 0.928 0.927
5000 0.043 0.078 0.953 0.952 0.952 0.081 0.083 0.936 0.936 0.937
10000 0.045 0.058 0.951 0.952 0.952 0.081 0.052 0.955 0.954 0.955

Results for Example 4.5.1(b) Results for Example 4.5.1(e)
500 0.087 0.138 0.898 0.896 0.897 0.719 1.000 0.654 0.635 0.643
1000 0.067 0.089 0.900 0.900 0.899 0.486 1.000 0.700 0.682 0.692
5000 0.059 0.082 0.891 0.890 0.891 0.146 1.000 0.735 0.735 0.736
10000 0.052 0.045 0.911 0.914 0.915 0.105 0.997 0.754 0.752 0.752

Results for Example 4.5.1(c) Results for Example 4.5.1(f)
500 0.088 0.559 0.412 0.404 0.410 0.688 1.000 0.635 0.603 0.611
1000 0.066 0.408 0.390 0.391 0.396 0.459 1.000 0.669 0.655 0.660
5000 0.060 0.327 0.363 0.364 0.364 0.141 1.000 0.717 0.712 0.713
10000 0.048 0.248 0.392 0.395 0.396 0.100 0.994 0.726 0.730 0.728

4.6 Discussion

In this paper we considered independence tests based on the five rank correlations from

Definitions 4.2.1–4.2.5. As we surveyed in Section 4.2, recent advances lead to little difference

in the efficiency of known algorithms to compute these correlation coefficients. For continuous

distributions, i.e., data without ties, all correlations except for Dette–Siburg–Stoimenov’s ξ∗n
can be computed in nearly linear time. Moreover, all but Hoeffding’s D give consistent tests

of independence for arbitrary continuous distributions; consistency of D can be established

for all absolutely continuous distributions.

Our main new contribution is a local power analysis for continuous distributions that
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revealed interesting differences in the power of the tests. This analysis features subtle differ-

ences but the take-away message is that ξn is suboptimal for testing independence, whereas

the more classical Dn, Rn, and τ ∗n are rate optimal in the considered setup. This said, ξn and

ξ∗n have very appealing properties that do not pertain to independence but rather detection

of perfect functional dependence. We refer the reader to Dette et al. (2013) and Chatterjee

(2021) as well as Cao and Bickel (2020).

We summarize the properties discussed in our paper in Table 4.3. When referring to

independence tests in this table we assume continuous observations, i.e., F ∈ F c. Moreover,

when discussing ξ∗n, we assume additionally that the kernel K and bandwidths h1, h2 satisfy

all assumptions stated in Definition 4.2.2. The table features two rows for computation, where

the first pertains to continuous observations free of ties and the second pertains to arbitrary

observations. The third row of the table concerns consistency of correlation measures; refer

to (4.2.8) and (4.4.1) for the definitions of table entries. The fourth row concerns consistency

of independence tests assuming F ∈ F c. Finally, we summarize the rate-optimality and rate

sub-optimality of five independence tests under two local alternatives (A) and (B) considered

in Section 4.3.
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Table 4.3: Properties of the five rank correlation coefficients defined in Definitions 4.2.1–
4.2.5.

µn ξn ξ∗n Dn Rn τ ∗n

Computa- F ∈ F c O(n log n) O(n5/3) O(n log n) O(n log n) O(n log n)

(i) tional
efficiency F ∈ F O(n log n) —— O(n log n) O(n2) O(n2)

(ii)
Consistency of
correlation
measures

F ∈ F∗(a) F ∈ F∗ F ∈ F ac F ∈ F F ∈ F τ∗

(ii’)
Consistency of
independence

tests
F ∈ F c F ∈ FDSS F ∈ F ac F ∈ F c F ∈ F c

(iii)
Statistical (A) rate sub-

optimal —— rate-
optimal

rate-
optimal

rate-
optimal

efficiency
(B) rate sub-

optimal —— rate-
optimal

rate-
optimal

rate-
optimal

(a) Recall the definitions of bivariate distribution families in (4.2.8) and (4.4.1)
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Appendix A

APPENDIX OF CHAPTER 2

A.1 Technical proofs

We first introduce more notation. For x ∈ R, let x+ denote the positive part of x, defined

as max{x, 0}. For any vector v ∈ Rp, we denote ‖v‖ as its Euclidean norm. We define the

L∞ norm of a random variable as ‖X‖∞ = inf{t ≥ 0 : |X| ≤ t a.s.}, the ψ2 (sub-gaussian)

norm as ‖X‖ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}, and the ψ1 (sub-exponential) norm as

‖X‖ψ1 = inf{t > 0 : E exp(|X|/t) ≤ 2}. For any measure PZ and kernel h, we let H(`)
n (·; PZ)

be the U-statistic based on the completely degenerate kernel h(`)(·; PZ) from (2.2.2):

H(`)
n (·; PZ) :=

(
n

`

)−1 ∑
1≤i1<i2<···<i`≤n

h(`)
(
Zi1 , . . . , Zi` ; PZ

)
. (A.1.1)

A.1.1 Proofs for Section 2.3 of the main paper

Proof of Proposition 2.3.2. Since Y1, . . . , Yd are i.i.d. realizations of ζ, we have

P
(

max
j∈JdK

Yj ≤ x
)

= {P(ζ ≤ x)}d = {Fζ(x)}d = {1− F ζ(x)}d, (A.1.2)

where

F ζ(x) := P(ζ > x) =
κ

Γ(µ1/2)

(x+ Λ

2λ1

)µ1/2−1

exp
(
− x+ Λ

2λ1

)
{1 + o(1)} (A.1.3)

for x > −Λ as x→∞ by Equation (6) in Zolotarev (1962). Take

x = 4λ1 log p+ λ1(µ1 − 2) log log p− Λ + λ1y.
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Noticing that x→∞ as p→∞ and recalling d = p(p− 1)/2, we obtain

d · F ζ(x)

=
p(p− 1)

2

κ

Γ(µ1/2)

(x+ Λ

2λ1

)µ1/2−1

exp
(
− x+ Λ

2λ1

)
{1 + o(1)}

=
p(p− 1)

2

κ

Γ(µ1/2)
(2 log p)µ1/2−1 exp

{
− 2 log p−

(µ1

2
− 1
)

log log p− y

2

}
{1 + o(1)}

=
2µ1/2−2κ

Γ(µ1/2)
exp

(
− y

2

)
{1 + o(1)}. (A.1.4)

Combing (A.1.2) and (A.1.4), we deduce that

P(max
j∈JdK

Yj ≤ x) = {1− F ζ(x)}d → exp
{
− lim

d→∞
d · F ζ(x)

}
= exp

{
− 2µ1/2−2κ

Γ(µ1/2)
exp

(
− y

2

)}
,

which concludes the proof of the lemma.

A.1.2 Proofs for Section 2.4 of the main paper

A.1.2.1 Proof of Theorem 2.4.1

Proof of Theorem 2.4.1. We proceed in two steps, proving first the case m = 2 and then

generalizing to m ≥ 2. For notational convenience we introduce the constants b1 := ‖h‖∞ <

∞ and b2 := supv‖φv‖∞ <∞.

Step I. Supposem = 2. We start with the scenario that there are infinitely many nonzero

eigenvalues. For a large enough integer K to be specified later, we define the “truncated”

kernel of h2(z1, z2; PZ) as h2,K(z1, z2; PZ) =
∑K

v=1 λvφv(z1)φv(z2), with corresponding U-

statistic

ÛK,n :=

(
n

2

)−1 ∑
1≤i<j≤n

h2,K(Zi, Zj; PZ).
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For simpler presentation, define Yv,i = φv(Zi) for all v = 1, 2, . . . and i ∈ JnK. In view of the

expansions of h2,K(·) and h2(·), ÛK,n and Ûn can be written as

ÛK,n =
1

n− 1

{ K∑
v=1

λv

(
n−1/2

n∑
i=1

Yv,i

)2

−
K∑
v=1

λv

(∑n
i=1 Y

2
v,i

n

)}
and Ûn =

1

n− 1

{ ∞∑
v=1

λv

(
n−1/2

n∑
i=1

Yv,i

)2

−
∞∑
v=1

λv

(∑n
i=1 Y

2
v,i

n

)}
.

We now quantify the approximation accuracy of ÛK,n to Ûn. Using Slutsky’s argument, we

obtain,

P
{

(n− 1)Ûn ≥ xn

}
= P

{ ∞∑
v=1

λv

(
n−1/2

n∑
i=1

Yv,i

)2

−
∞∑
v=1

λv

(∑n
i=1 Y

2
v,i

n

)
≥ xn

}
≤ P

{ K∑
v=1

λv

(
n−1/2

n∑
i=1

Yv,i

)2

−
K∑
v=1

λv

(∑n
i=1 Y

2
v,i

n

)
≥ xn − ε1

}
+ P

{∣∣∣(n− 1)(Ûn − ÛK,n)
∣∣∣ ≥ ε1

}
≤ P

{ K∑
v=1

λv

(
n−1/2

n∑
i=1

Yv,i

)2

−
K∑
v=1

λv ≥ xn − ε1 − ε2
}

+ P
{∣∣∣(n− 1)(Ûn − ÛK,n)

∣∣∣ ≥ ε1

}
+ P

{∣∣∣ K∑
v=1

λv

∑n
i=1(Y 2

v,i − 1)

n

∣∣∣ ≥ ε2

}
, (A.1.5)

where ε1, ε2 are constants to be specified later.

The first term on the right-hand side of (A.1.5) may be controlled using Zăıtsev’s mul-

tivariate moderate deviation theorem. For this, we require a dimension-free bound on∑K
v=1 uvλ

1/2
v (n−1/2Yv,i) for any u = (u1, . . . , uK)> ∈ RK satisfying ‖u‖ = 1. Indeed, we

have∥∥∥ K∑
v=1

uvλ
1/2
v

Yv,i
n1/2

∥∥∥
∞
≤

K∑
v=1

|uv|λ1/2
v

‖Yv,i‖∞
n1/2

≤
( K∑
v=1

u2
v

)1/2( K∑
v=1

λv

)1/2

n−1/2b2 ≤ n−1/2Λ1/2b2.

Thus all assumptions in Theorem 1.1 in Zăıtsev (1987) are satisfied with the τ in his Equa-
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tion (1.5) chosen to be n−1/2Λ1/2b2. We obtain the following bound:

P
{ K∑
v=1

λv

(
n−1/2

n∑
i=1

Yv,i

)2

−
K∑
v=1

λv ≥ xn − ε1 − ε2
}

= P
[{ K∑

v=1

(
λ1/2
v

n∑
i=1

n−1/2Yv,i

)2}1/2

≥
(
xn − ε1 − ε2 +

K∑
v=1

λv

)1/2

+

]
≤ P

[{ K∑
v=1

(λ1/2
v ξv)

2
}1/2

≥
(
xn − ε1 − ε2 +

K∑
v=1

λv

)1/2

+
− ε3

]
+ c1K

5/2 exp
{
− ε3
c2K5/2(n−1/2Λ1/2b2)

}
= P

[ K∑
v=1

λvξ
2
v ≥

{(
xn − ε1 − ε2 +

K∑
v=1

λv

)1/2

+
− ε3

}2

+

]
+ c1K

5/2 exp
(
− n1/2ε3
c2Λ1/2b2K5/2

)
,

(A.1.6)

where ε3 is a constant to be specified later. Combining (A.1.5) and (A.1.6), we find using

Slutsky’s argument once again that

P
{ ∞∑
v=1

λv

(
n−1/2

n∑
i=1

Yv,i

)2

−
∞∑
v=1

λv

(∑n
i=1 Y

2
v,i

n

)
≥ xn

}
≤ P

[ ∞∑
v=1

λv(ξ
2
v − 1) ≥

{(
xn − ε1 − ε2 +

K∑
v=1

λv

)1/2

+
− ε3

}2

+
−

K∑
v=1

λv − ε4
]

+ P
{∣∣∣(n− 1)(Ûn − ÛK,n)

∣∣∣ ≥ ε1

}
+ P

{∣∣∣ K∑
v=1

λv

∑n
i=1(Y 2

v,i − 1)

n

∣∣∣ ≥ ε2

}
+ c1K

5/2 exp
(
− n1/2ε3
c2Λ1/2b2K5/2

)
+ P

{∣∣∣ ∞∑
v=K+1

λv(ξ
2
v − 1)

∣∣∣ ≥ ε4

}
, (A.1.7)

where ε4 is another constant to be specified later. In the following, we separately study the

five terms on the right-hand side of (A.1.7), starting from the first term.
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Let ε∗n := xn − [{(xn − ε1 − ε2 +
∑K

v=1 λv)
1/2
+ − ε3}2

+ −
∑K

v=1 λv − ε4]. Then

ε∗n =

ε1 + ε2 + 2ε3(xn − ε1 − ε2 +
∑K

v=1 λv)
1/2 − ε23 + ε4, if xn +

∑K
v=1 λv ≥ ε1 + ε2 + ε23,

xn +
∑K

v=1 λv + ε4, otherwise,

and

P
{ ∞∑
v=1

λv(ξ
2
v − 1) ≥ xn − ε∗n

}
≤ P

{ ∞∑
v=1

λv(ξ
2
v − 1) ≥ xn

}
+ (ε∗n)+ · max

x′∈[xn−(ε∗n)+,xn]
pζ(x

′)

(A.1.8)

where pζ(x) is the density of the random variable ζ :=
∑∞

v=1 λv(ξ
2
v − 1).

We turn to the second term in (A.1.7). Proposition 2.6.1 and Example 2.5.8 in Vershynin

(2018) yield that∥∥∥n−1/2

n∑
i=1

Yv,i

∥∥∥2

ψ2

≤ 8n−1

n∑
i=1

∥∥∥Yv,i∥∥∥2

ψ2

≤ 8(log 2)−1b2
2 ≤ 12b2

2.

Applying the triangle inequality and Lemma 2.7.6 in Vershynin (2018), we deduce that∥∥∥ ∞∑
v=K+1

λv

(
n−1/2

n∑
i=1

Yv,i

)2∥∥∥
ψ1

≤
∞∑

v=K+1

λv

∥∥∥(n−1/2

n∑
i=1

Yv,i

)2∥∥∥
ψ1

=
∞∑

v=K+1

λv

∥∥∥n−1/2

n∑
i=1

Yv,i

∥∥∥2

ψ2

≤ 12b2
2

∞∑
v=K+1

λv.

Using Proposition 2.7.1 in Vershynin (2018), this is seen to further imply that, for any ε′1 > 0,

P
{ ∞∑
v=K+1

λv

(
n−1/2

n∑
i=1

Yv,i

)2

≥ ε′1

}
≤ 2 exp

(
− ε′1

12b2
2

∑∞
v=K+1 λv

)
.

Noting that ∣∣∣∣∣
∞∑

v=K+1

λv

(
n−1

n∑
i=1

Y 2
v,i

)∣∣∣∣∣ ≤ b2
2

∞∑
v=K+1

λv,
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we obtain, for any ε1 > b2
2

∑∞
v=K+1 λv,

P
{∣∣∣(n− 1)(Ûn − ÛK,n)

∣∣∣ ≥ ε1

}
≤ P

{∣∣∣ ∞∑
v=K+1

λv

(
n−1/2

n∑
i=1

Yv,i

)2∣∣∣+
∣∣∣ ∞∑
v=K+1

λv

(
n−1

n∑
i=1

Y 2
v,i

)∣∣∣ ≥ ε1

}
≤ P

{∣∣∣ ∞∑
v=K+1

λv

(
n−1/2

n∑
i=1

Yv,i

)2∣∣∣ ≥ ε1 − b2
2

∞∑
v=K+1

λv

}
≤ 2e1/12 exp

(
− ε1

12b2
2

∑∞
v=K+1 λv

)
. (A.1.9)

We next study the third term in (A.1.7). Again, Proposition 2.6.1 and Example 2.5.8 in

Vershynin (2018) give∥∥∥n−1

n∑
i=1

(Y 2
v,i − 1)

∥∥∥2

ψ2

≤ 8n−2

n∑
i=1

∥∥∥Y 2
v,i − 1

∥∥∥2

ψ2

≤ 12n−1(b2
2 + 1)2,

which further yields

∥∥∥ K∑
v=1

λv

n∑
i=1

Y 2
v,i − 1

n

∥∥∥
ψ2

≤
K∑
v=1

λv

∥∥∥n−1

n∑
i=1

(Y 2
v,i − 1)

∥∥∥
ψ2

≤ 121/2n−1/2Λ(b2
2 + 1).

Using Proposition 2.5.2 in Vershynin (2018), we have, for any ε2 > 0,

P

(∣∣∣ K∑
v=1

λv

n∑
i=1

Y 2
v,i − 1

n

∣∣∣ ≥ ε2

)
≤ 2 exp

{
− nε22

48Λ2(b2
2 + 1)2

}
. (A.1.10)

The fourth term in (A.1.7) is explicit, and it remains to bound the fifth and last term.

Since ξv is a sub-gaussian random variable, ξ2
v − 1 is sub-exponential. One readily verifies

‖ξ2
v − 1‖ψ1 ≤ 4, and accordingly∥∥∥ ∞∑

v=K+1

λv(ξ
2
v − 1)

∥∥∥
ψ1

≤
∞∑

v=K+1

λv‖ξ2
v − 1‖ψ1 ≤ 4

∞∑
v=K+1

λv.
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By Proposition 2.7.1 in Vershynin (2018), this further implies that, for any ε4 > 0,

P
{∣∣∣ ∞∑

v=K+1

λv(ξ
2
v − 1)

∣∣∣ ≥ ε4

}
≤ 2 exp

(
− ε4

4
∑∞

v=K+1 λv

)
. (A.1.11)

We now specify the integer K to be bn(1−3θ)/5c. By the definition of θ, there exists

a positive absolute constant Cθ such that
∑∞

v=K+1 λv ≤ Cθn
−θ for all sufficiently large n.

Combining this fact and inequalities (A.1.7)–(A.1.11), we obtain

P
{

(n− 1)Ûn > xn

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} − 1

≤ {F ζ(xn)}−1
[
(ε∗n)+ · max

x′∈[xn−(ε∗n)+,xn]
pζ(x

′) + 2e1/12 exp
(
− ε1

12b2
2

∑∞
v=K+1 λv

)
+ 2 exp

{
− nε22

48Λ2(b2
2 + 1)2

}
+ c1K

5/2 exp
(
− n1/2ε3
c2Λ1/2b2K5/2

)
+ 2 exp

(
− ε4

4
∑∞

v=K+1 λv

)]
≤ {F ζ(xn)}−1

[
(ε∗n)+ · max

x′∈[xn−(ε∗n)+,xn]
pζ(x

′) + 2e1/12 exp
(
− ε1

12b2
2Cθn

−θ

)
+ 2 exp

{
− nε22

48Λ2(b2
2 + 1)2

}
+ c1n

(1−3θ)/2 exp
{
− n1/2ε3
c2Λ1/2b2n(1−3θ)/2

}
+ 2 exp

(
− ε4

4Cθn−θ

)]
,

(A.1.12)

which we shall prove to converge to 0 uniformly on [−Λ, enn
θ]. The starting point for proving

this are Equations (5) and (6) in Zolotarev (1962), which yield that the density pζ(x) and

the survival function F ζ(x) := P(ζ > x) of ζ =
∑∞

v=1 λv(ξ
2
v − 1) satisfy

pζ(x) =
κ

2λ1 · Γ(µ1/2)

(x+ Λ

2λ1

)µ1/2−1

exp
(
− x+ Λ

2λ1

)
{1 + o(1)}

and F ζ(x) =
κ

Γ(µ1/2)

(x+ Λ

2λ1

)µ1/2−1

exp
(
− x+ Λ

2λ1

)
{1 + o(1)}

for x > −Λ tending to infinity. Here µ1 is the multiplicity of the largest eigenvalue λ1 and

κ :=
∏∞

v=µ1+1(1− λv/λ1)−1/2.

Consider the first term in (A.1.12). We claim that there exists an absolute constant
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C∗ζ > 0 such that, for all 0 < ε ≤ λ1/2,

sup
x≥−Λ

∣∣∣{F ζ(x)}−1 · max
x′∈[x−ε,x]

pζ(x
′)
∣∣∣ ≤ C∗ζ . (A.1.13)

Indeed, we have pζ(x)/F ζ(x) = (2λ1)−1{1 + o(1)} as x → ∞, and thus there exists an

absolute constant x0 > −Λ such that pζ(x)/F ζ(x) ≤ λ−1
1 for all x ≥ x0. Then for all

0 < ε ≤ λ1/2 and all x ≥ x0 + ε,

maxx′∈[x−ε,x] pζ(x
′)

F ζ(x)
=
pζ(x−ε′)
F ζ(x)

≤ pζ(x−ε′)
F ζ(x−ε′)−ε′ · pζ(x−ε′)

=
1

F ζ(x−ε′)/pζ(x−ε′)−ε′
≤ 2

λ1

where ε′ ∈ [0, ε] is chosen such that pζ(x − ε′) = maxx′∈[x−ε,x] pζ(x
′). Now (A.1.13) holds

when taking

C∗ζ = max
{ 2

λ1

, {F ζ(x0 + λ1/2)}−1 · max
x′∈[−Λ,x0+λ1/2]

pζ(x
′)
}
.

From (A.1.13), to control the first term in (A.1.12), it remains to show that (ε∗n)+ con-

verges to 0 uniformly on [−Λ, enn
θ] as n→∞. Choosing

ε1 = 12b2
2Cθn

−θ
(xn + Λ

2λ1

+ nθ/2
)
, ε2 = n−θ, ε3 = n−θ/2, ε4 = 4Cθn

−θ
(xn + Λ

2λ1

+ nθ/2
)
,

(A.1.14)

we deduce that the first term in (A.1.12) converges uniformly to 0 on [−Λ, enn
θ] as n→∞

by observing that if xn +
∑K

v=1 λv ≥ ε1 + ε2 + ε23,

ε∗n ≤ ε1 + ε2 + 2ε3(xn + Λ)1/2 − ε23 + ε4

≤ 6b2
2Cθ + 2Cθ
λ1

(
en +

Λ

nθ

)
+ 2
(
en +

Λ

nθ

)1/2

+ (12b2
2Cθ + 4Cθ)n

−θ/2,

and otherwise

ε∗n ≤ ε1 + ε2 + ε23 + ε4 ≤
6b2

2Cθ + 2Cθ
λ1

(
en +

Λ

nθ

)
+ (12b2

2Cθ + 4Cθ)n
−θ/2 + 2n−θ.

Recall that we consider a positive sequence {en} tending to 0.
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We then further verify that the other four terms in (A.1.12) also converge to 0 uniformly

on [−Λ, enn
θ] as n → ∞. There exists some absolute constant c∗ζ > 0 such that for all

x ≥ 2λ1 − Λ,

F ζ(x) ≥ c∗ζ
κ

Γ(µ1/2)

(x+ Λ

2λ1

)µ1/2−1

exp
(
− x+ Λ

2λ1

)
. (A.1.15)

We then have, by noticing θ < 1/3, for all n large enough and all xn ∈ [2λ1 − Λ, enn
θ],

{F ζ(xn)}−1 exp
(
− ε1

12b2
2Cθn

−θ

)
≤ Γ(µ1/2)

c∗ζκ

(ennθ + Λ

2λ1

)1/2

exp(−nθ/2),

{F ζ(xn)}−1 exp
{
− nε22

48Λ2(b2
2 + 1)2

}
≤ Γ(µ1/2)

c∗ζκ

(ennθ + Λ

2λ1

)1/2

exp(−C ′n1/3),

{F ζ(xn)}−1n(1−3θ)/2 exp
{
− n1/2ε3
c2Λ1/2b2n(1−3θ)/2

}
≤ Γ(µ1/2)

c∗ζκ

(ennθ+Λ

2λ1

)1/2

n(1−3θ)/2 exp(−C ′′nθ),

{F ζ(xn)}−1 exp
(
− ε4

4Cθn−θ

)
≤ Γ(µ1/2)

c∗ζκ

(ennθ + Λ

2λ1

)1/2

exp(−nθ/2). (A.1.16)

Here C ′ and C ′′ are some absolute positive constants. The inequalities in (A.1.16) hold

for all sufficiently large n and all xn ∈ [−Λ, 2λ1 − Λ] with replacing Γ(µ1/2)/c∗ζκ · {(ennθ +

Λ)/(2λ1)}1/2 by {F ζ(2λ1 − Λ)}−1, which together with (A.1.16) concludes the uniform con-

vergence.

If there are only finitely many nonzero eigenvalues, a simple modification to (A.1.12)

gives

P
{

(n− 1)Ûn > xn

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} − 1 ≤ 1

F ζ(x)

[
(ε∗n)+ · max

x′∈[xn−(ε∗n)+,xn]
pζ(x

′)

+ 2 exp
{
− nε22

48Λ2(b2
2 + 1)2

}
+ c1K

5/2 exp
(
− n1/2ε3
c2Λ1/2b2K5/2

)]
,

(A.1.17)

where ε∗n := xn − [{(xn − ε2 + Λ)
1/2
+ − ε3}2

+ − Λ] and K is the number of nonzero eigenval-

ues. Choosing ε2 = n−1/3, ε3 = n−1/6, one can obtain that the right-hand side of (A.1.17)
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converges uniformly to 0 on [−Λ, enn
θ] as n→∞.

We thus proved that

sup
xn∈[−Λ,ennθ]

[
P
{

(n− 1)Ûn > xn

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} − 1

]
≤ o(1).

For the lower bound, it can be shown similarly that if there are infinitely many nonzero

eigenvalues, then

P
{

(n− 1)Ûn > xn

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} − 1

≥ {F ζ(xn)}−1
[
− (ε∗∗n )+ · max

x′′∈[xn,xn+(ε∗∗n )+]
pζ(x

′′)− 2e1/12 exp
(
− ε1

12b2
2Cθn

−θ

)
−2 exp

{
− nε22

48Λ2(b2
2+1)2

}
−c1n

(1−3θ)/2 exp
{
− n1/2ε3
c2Λ1/2b2n(1−3θ)/2

}
−2 exp

(
− ε4

4Cθn−θ

)]
,

(A.1.18)

where

ε∗∗n :=
[{(

xn + ε1 + ε2 +
K∑
v=1

λv

)1/2

+
+ ε3

}2

−
K∑
v=1

λv + ε4

]
− xn

=

ε1 + ε2 + 2ε3(xn + ε1 + ε2 +
∑K

v=1 λv)
1/2 + ε23 + ε4, if xn +

∑K
v=1 λv ≥ −ε1 − ε2,

−xn −
∑K

v=1 λv + ε23 + ε4, otherwise.

We choose (A.1.14) as well. To conclude the lower bound, it suffices to notice that there

exists an absolute constant C∗∗ζ > 0 such that

sup
x≥−Λ

∣∣∣{F ζ(x)}−1 · max
x′′∈[x,x+(ε∗∗n )+]

pζ(x
′′)
∣∣∣ ≤ C∗∗ζ ,

and ε∗∗n converges uniformly to 0 on [−Λ, enn
θ]: if xn +

∑K
v=1 λv ≥ −ε1 − ε2, then

0 < ε∗∗n ≤
6b2

2Cθ + 2Cθ
λ1

(
en +

Λ

nθ

)
+ 2
(
en +

Λ + 2

nθ

)1/2

+ (12b2
2Cθ + 4Cθ)n

−θ/2 + 2n−θ
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for all n large enough, and otherwise

0 < ε1 + ε2 + ε23 + ε4 ≤ ε∗∗n ≤
∑

v>bn(1−3θ)/5c
λv +

2Cθ
λ1

(
en +

Λ

nθ

)
+ 4Cθn

−θ/2 + n−θ.

If there are only finitely many nonzero eigenvalues, one can obtain

P
{

(n− 1)Ûn > xn

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} − 1 ≥ 1

F ζ(x)

[
− (ε∗∗n )+ · max

x′′∈[xn,xn+(ε∗∗n )+]
pζ(x

′′)

− 2 exp
{
− nε22

48Λ2(b2
2 + 1)2

}
− c1K

5/2 exp
(
− n1/2ε3
c2Λ1/2b2K5/2

)]
,

(A.1.19)

where ε∗∗n := [{(xn + ε2 + Λ)
1/2
+ + ε3}2−Λ]− xn and K is the number of nonzero eigenvalues.

Choosing ε2 = n−1/3, ε3 = n−1/6, one can verify that the right-hand side of (A.1.19) converges

uniformly to 0 on [−Λ, enn
θ] as n→∞. This completes the proof of the case m = 2.

Step II. We use the Hoeffding decomposition and the exponential inequality for bounded

completely degenerate U-statistics of Arcones and Giné (1993) to prove the general case

m ≥ 2. Write(
m

2

)−1

(n− 1)Ûn = (n− 1)H(2)
n (·; PZ) +

m∑
`=3

(
m

2

)−1(
m

`

)
(n− 1)H(`)

n (·; PZ).

Using Slutsky’s argument, we have

P
{(

m
2

)−1
(n− 1)Ûn > xn

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

}
≤

P
{

(n− 1)H
(2)
n (·; PZ) > xn − ε#n

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} +
m∑
`=3

P
{(

m
2

)−1(m
`

)
(n− 1) · |H(`)

n (·; PZ)| ≥ ε#n,`

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} ,

(A.1.20)

where {ε#n,`, ` = 3, . . . ,m} are constants to be specified later and ε#n :=
∑m

`=3 ε
#
n,`.
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We analyze the first term and the remaining terms on the right-hand side of (A.1.20)

separately. To bound the latter, we employ Proposition 2.3(c) in Arcones and Giné (1993),

which states that there exist absolute positive constants C ′` and C ′′` such that for all ε5 > 0,

P(n`/2|H(`)
n (·; PZ)| ≥ ε5) ≤ C ′` exp{−C ′′` (ε5/‖h(`)(·; PZ)‖∞)2/`}, (A.1.21)

where ‖h(`)(·; PZ)‖∞ ≤ 2`b1 can be shown by the alternative formula of h(`)(z1, . . . , z`; PZ)

as below:

h(`)(z1, . . . , z`; PZ) = h`(z1, . . . , z`; PZ)+
`−1∑
k=1

(−1)`−k
∑

1≤i1<···<ik≤`

hk(zi1 , . . . , zik ; PZ)+(−1)`Eh.

Plugging (A.1.21) into each term in the sum on the right of (A.1.20) implies, for n ≥ 2,

m∑
`=3

P
{(

m
2

)−1(m
`

)
(n− 1) · |H(`)

n (·; PZ)| ≥ ε#n,`

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

}
≤

m∑
`=3

{F ζ(xn)}−1C ′` exp
[
− C ′′`

{
n`/2−1

(
m

2

)(
m

`

)−1

ε#n,`

/
‖h(`)(·; PZ)‖∞

}2/`]

≤



m∑
`=3

C ′`
c∗ζ

{(xn+Λ

2λ1

)µ1/2−1

exp
(
−xn+Λ

2λ1

)}−1

exp
[
−C ′′` nθ

{(m
2

)(
m

`

)−1

ε#n,`

/
(2`b1)

}2/`]
,

for xn ∈ [2λ1 − Λ, enn
θ],

m∑
`=3

C ′`{F ζ(2λ1 − Λ)}−1 exp
[
− C ′′` nθ

{(m
2

)(
m

`

)−1

ε#n,`

/
(2`b1)

}2/`]
,

for xn ∈ [−Λ, 2λ1 − Λ],

(A.1.22)

where the last step is due to (A.1.15) and the fact that θ ≤ 1/3 ≤ 1− 2/` for ` ≥ 3. Taking

ε#n,` = b1

(
m

2

)−1(
m

`

){ 4

C ′′` n
θ

(xn + Λ

2λ1

+ nθ/2
)}`/2

,

the sum on the right-hand side of (A.1.22) is seen to be o(1). It remains to control the first
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term in (A.1.20). We start by writing the term as

P
{

(n− 1)H
(2)
n > xn − ε#n

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

}
=

P
{

(n− 1)H
(2)
n > xn − ε#n

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn − ε#n

} · P
{∑∞

v=1 λv(ξ
2
v − 1) > xn − ε#n

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} . (A.1.23)

The first factor in (A.1.23) converges uniformly to 1 on [−Λ, enn
θ] by going through the same

proof in Step I while noticing that although xn − ε#n is not necessarily greater than or equal

to −Λ, it holds for all xn ∈ [−Λ, enn
θ] that

0 < ε#n =
m∑
`=3

ε#n,` ≤
m∑
`=3

b1

(
m

2

)−1(
m

`

){ 2

C ′′λ1

(
en +

Λ

nθ

)
+

4

C ′′
n−θ/2

}`/2
. (A.1.24)

For the second term in (A.1.23), we have

1 ≤ F ζ(xn − ε#n )

F ζ(xn)
≤ 1 +

ε#n ·maxx′∈[xn−ε#n ,xn] pζ(x
′)

F ζ(xn)
≤ 1 + C∗ζ · ε#n

for xn > 0 and ε#n ≤ λ1/2 by (A.1.13). By (A.1.24) again, we have the second term

in (A.1.23) uniformly converges to 1 as well. Therefore, we obtain the right-hand side of

(A.1.20) is uniformly converges to 1 on [−Λ, enn
θ] as n→∞. Consequently,

sup
xn∈[−Λ,ennθ]

[
P
{(

m
2

)−1
(n− 1)Ûn > xn

}
P
{∑∞

v=1 λv(ξ
2
v − 1) > xn

} − 1

]
≤ o(1).

Again a similar derivation yields a corresponding lower bound of order o(1), completing the

proof of the general case m ≥ 2.
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A.1.2.2 Proof of Theorem 2.4.2

Proof of Theorem 2.4.2. Since the marginal distributions are assumed continuous, we may

assume, without loss of generality, that they are uniform distributions on [0, 1]. Theorem

2.4.1 can then directly apply to the studied kernel h(·) in view of Assumption 2.2.1.

The main tool in this proof is Theorem 1 in Arratia et al. (1989). Specifically, we use the

version presented in Lemma C2 in Han et al. (2017). We let I := {(j, k) : 1 ≤ j < k ≤ p},

and for all u := (j, k) ∈ I, we define Bu = {(`, v) ∈ I : {`, v} ∩ {j, k} 6= ∅} and

ηu := ηjk :=

(
m

2

)−1

(n− 1)Ûjk.

Then the theorem yields that∣∣∣P(max
u∈I

ηu ≤ t
)
− exp(−Ln)

∣∣∣ ≤ A1 + A2 + A3, (A.1.25)

where Ln =
∑

u∈I P(ηu > t),

A1 =
∑
u∈I

∑
β∈Bu

P(ηu > t)P(ηβ > t), A2 =
∑
u∈I

∑
β∈Bu\{u}

P(ηu > t, ηβ > t),

and A3 =
∑
u∈I

E|P{ηu > t | σ(ηβ : β 6∈ Bu)} − P(ηu > t)|.

We now choose an appropriate value of t such that Ln tends to a constant independent of p

as n→∞. Let

t = 4λ1 log p+ λ1(µ1 − 2) log log p− Λ + λ1y � 4λ1 log p = o(nθ). (A.1.26)

By Theorem 2.4.1,

Ln =
p(p− 1)

2
P(η12 > t) =

p(p− 1)

2
F ζ(t){1 + o(1)}. (A.1.27)
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Using Example 5 in Hashorva et al. (2015), we have for any t > −Λ,

F ζ(t) =
κ

Γ(µ1/2)

(t+ Λ

2λ1

)µ1/2−1

exp
(
− t+ Λ

2λ1

)
[1 +O{(log p)−1}]. (A.1.28)

Combining (A.1.27) and (A.1.28) implies

Ln =
p(p− 1)

2

κ

Γ(µ1/2)

(t+ Λ

2λ1

)µ1/2−1

exp
(
− t+ Λ

2λ1

)
{1 + o(1)}

=
p(p− 1)

2

κ

Γ(µ1/2)
(2 log p)µ1/2−1 exp

{
− 2 log p−

(µ1

2
− 1
)

log log p− y

2

}
{1 + o(1)}

=
2µ1/2−2κ

Γ(µ1/2)
exp

(
− y

2

)
{1 + o(1)}, (A.1.29)

where κ :=
∏

v=µ1+1(1− λv/λ1)−1/2.

Next we bound A1, A2, and A3 separately. We have

A1 = 1
2
p(p− 1)(2p− 3){P(η12 > t)}2.

Moreover, since Hoeffding’s D is a rank-based U-statistic, Proposition 2.2.1(ii) yields that

ηu is independent of ηβ for all u ∈ I, β ∈ Bu\{u}. Hence,

A2 =
∑
u∈I

∑
β∈Bu\{u}

P(ηu > t)P(ηβ > t) = p(p− 1)(p− 2){P(η12 > t)}2.

Again, by Proposition 2.2.1(iii), we have A3 = 0. Accordingly,

A1 + A2 + A3 ≤ 2p(p− 1)2{P(η12 > t)}2 =
2(2Ln)2

p
= O

(1

p

)
. (A.1.30)

Let L = 2µ1/2−2κ/Γ(µ1/2) · exp(−y/2). Plugging (A.1.26), (A.1.29), (A.1.30) into (A.1.25)

yields∣∣∣P{(m
2

)−1

(n− 1) max
j<k

Ûjk − 4λ1 log p− λ1(µ1 − 2) log log p+ Λ ≤ λ1y
}
− exp(−L)

∣∣∣
≤
∣∣∣P(max

u∈I
ηα ≤ t

)
− exp(−Ln)

∣∣∣+
∣∣∣ exp(−Ln)− exp(−L)

∣∣∣ = o(1).
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This completes the proof.

A.1.2.3 Proof of Corollary 2.4.1

Proof of Corollary 2.4.1. We only give the proof for Hoeffding’s D here. The proofs for the

other two tests are very similar and hence omitted. As in the proof of Theorem 2.4.2, we

may assume the margins to be uniformly distributed on [0, 1] without loss of generality. To

employ Theorem 2.4.2, we only need to compute θ. We claim that

∞∑
v=K+1

λv �
(logK)2

K
. (A.1.31)

If this claim is true, then by the definition of θ, one obtains θ = 1/8 − δ, where δ is an

arbitrarily small pre-specified positive absolute constant.

We now prove (A.1.31). Notice that the K largest eigenvalues are corresponding to the

K smallest products ij, i, j ∈ Z+. We begin by assuming that there exists an integer M

such that the number of pairs (i, j) satisfying ij ≤M is exactly K:

2

bM1/2c∑
i=1

bM/ic − bM1/2c2 = K. (A.1.32)

To analyze
∑∞

v=K+1 λv, we first quantify M . An upper bound on
∑bM1/2c

i=1 bM/ic is

bM1/2c∑
i=1

⌊M
i

⌋
≤
bM1/2c∑
i=1

M

i
= M

bM1/2c∑
i=1

1

i
≤M

(
logbM1/2c+ 1

)
≤M

(1

2
logM + 1

)
,

and a lower bound is

bM1/2c∑
i=1

⌊M
i

⌋
≥
bM1/2c∑
i=1

(M
i
− 1
)

= M

bM1/2c∑
i=1

1

i
− bM1/2c

≥M logbM1/2c − bM1/2c ≥M log(M1/2 − 1)−M1/2.
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Thus we have M logM � K, which implies that M � K/ logK. Then we obtain

∞∑
v=K+1

λv �
bM1/2c∑
i=1

∞∑
j=bM/ic+1

1

i2j2
+

bM1/2c∑
j=1

∞∑
i=bM/jc+1

1

i2j2
+

∞∑
i=bM1/2c+1

∞∑
j=bM1/2c+1

1

i2j2

�
bM1/2c∑
i=1

1

i2(M/i)
+

bM1/2c∑
j=1

1

(M/j)j2
+

1

(M1/2)(M1/2)

� 2
{ log(M1/2)

M

}
+

1

M
� (logK)2

K
.

If there is no integerM such that (A.1.32) holds, then we pick the largest integerM1 and

the smallest integer M2 such that

2

bM1/2
1 c∑
i=1

⌊M1

i

⌋
− bM1/2

1 c2 < K < 2

bM1/2
2 c∑
i=1

⌊M2

i

⌋
− bM1/2

2 c2,

and let K1 and K2 denote the left-hand side and the right-hand side, respectively. One can

verify that K1 > K/2 and K2 < 2K for all sufficiently large K. Then we have

∞∑
v=K+1

λv ≤
∞∑

v=K1+1

λv �
(logK1)2

K1

≤ 2(logK)2

K

and
∞∑

v=K+1

λv ≥
∞∑

v=K2+1

λv �
(logK2)2

K2

≥ (logK)2

2K
.

Therefore, the asymptotic result for
∑∞

v=K+1 λv given in (A.1.31) still holds.

A.1.2.4 Proof of Lemma 2.4.1

Proof of Lemma 2.4.1. Again we only prove the claim for Hoeffding’s D; Blum–Kiefer–

Rosenblatt’s R and Bergsma–Dassios–Yanagimoto’s τ ∗ can be treated similarly. We first

establish the fact that Djk � Σ2
jk as Σjk → 0. Let {(Xji, Xki)

> : i ∈ J5K} be a collection

of independent and identically distributed random vectors that follow a bivariate normal
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distribution with mean (0, 0)> and covariance matrix

[
1 Σjk

Σjk 1

]
.

We have

Djk = EjkhD =

∫
hD(xj1, xk1, . . . , xj5, xk5)φ(xj1, xk1, . . . , xj5, xk5; Σjk)

5∏
i=1

dxji

5∏
i=1

dxki,

where

φ(xj1, xk1, . . . , xj5, xk5; Σjk) =
5∏
i=1

φ(xji, xki; Σjk),

and

φ(xji, xki; Σjk) =
1

2π(1− Σ2
jk)

1/2
exp

{
−
x2
ji + x2

ki − 2Σjkxjixki

2(1− Σ2
jk)

}
is the joint density of (Xji, Xki)

>. Notice that Djk is smooth with respect to Σjk:

∂sDjk

∂Σs
jk

=

∫
hD(xj1, xk1, . . . , xj5, xk5)

∂sφ(xj1, xk1, . . . , xj5, xk5; Σjk)

∂Σs
jk

5∏
i=1

dxji

5∏
i=1

dxki.

In order to prove Djk � Σ2
jk, it suffices to establish that Djk = 0 when Σjk = 0, the first

derivative of Djk with respect to Σjk is 0 at Σjk = 0, and the second derivative of Djk with

respect to Σjk is 5/π2 at Σjk = 0, which can be confirmed by a lengthy but straightforward

computation.

Now we turn to our claim. Recall that Varjk{h(1)
D (·; Pjk)} = 0 when Σjk = 0. We will

show that the first-order term in the Taylor series of Varjk{h(1)
D (·; Pjk)} with respect to Σjk

is also 0. Suppose, for contradiction, the first-order coefficient (denoted by a1) in the Taylor

series of Varjk{h(1)
D (·; Pjk)} is not 0, then for Σjk in a sufficiently small neighborhood of 0,

Varjk{h(1)
D (·; Pjk)} < 0 for Σjk < 0 if a1 > 0, and for Σjk > 0 if a1 < 0, which contradicts the

definition of Varjk{h(1)
D (·; Pjk)}. This together with EjkhD � Σ2

jk completes the proof.
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A.1.2.5 Proof of Theorem 2.4.3

Proof of Theorem 2.4.3. It is clear that we only have to consider maxj<k Ujk = Cγ(log p/n)

for some sufficiently large Cγ. The main idea here is to bound maxj<k Ûjk−maxj<k Ujk with

high probability. To do this, we first construct a concentration inequality for |Ûjk − Ujk|.

The Hoeffding decomposition of the difference is

Ûjk − Ujk =
m

n

n∑
i=1

h(1){(Xji, Xki)
>; Pjk}+

m∑
`=2

(
m

`

)
H(`)
n (·; Pjk). (A.1.33)

For controlling the first term in (A.1.33), recall that ‖h‖∞ ≤ b1 <∞, and then h(1)(·; Pjk) =

h1(·; Pjk) − Eh is bounded by 2b1 almost surely and Eh(1)(·; Pjk) = 0. We then apply

Bernstein’s inequality, giving

P
{m
n

∣∣∣ n∑
i=1

h(1)(·; Pjk)
∣∣∣ > t1

}
≤ 2 exp

(
− n(t1/m)2

2[Varjk{h(1)(·; Pjk)}+ 2b1(t1/m)/3]

)
. (A.1.34)

By the definition of the distribution family D(γ, p;h), we have

Varjk{h(1)(·; Pjk)} ≤ γEjkh = γUjk ≤ γCγ(log p/n).

Plugging this into (A.1.34) and taking t1 = C1(log p/n), where C1 is a constant to be specified

later, yields

P
{m
n

∣∣∣ n∑
i=1

h(1)(·; Pjk)
∣∣∣ > C1

log p

n

}
≤ 2 exp

{
− C2

1 log p

2(m2γCγ + 2mb1C1/3)

}
= 2
(1

p

)C2
1/(2m

2γCγ+4mb1C1/3)

. (A.1.35)

We then handle the remaining term. By Proposition 2.3(c) in Arcones and Giné (1993),

there exist absolute constants C ′`, C ′′` > 0 such that for all t ∈ (0, 1], 2 ≤ ` ≤ m,

P(|H(`)
n (·; Pjk)| ≥ t) ≤ C ′` exp

{
− C ′′` n

( t

‖h(`)(·; Pjk)‖∞

)2/`}
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≤ C ′` exp
{
− C ′′` n

( t

2`b1

)2/`}
≤ C ′` exp

(
− C ′′` nt

4b
2/`
1

)
,

which further implies that

P
{∣∣∣ k∑

`=2

(
m

`

)
H(`)
n (·; Pjk)

∣∣∣ ≥ t2

}
≤

m∑
`=2

P
{(m

`

)
|H(`)

n (·; Pjk)| ≥ t2
4b

2/`
1

(
m
`

)
/C ′′`∑m

`=2 4b
2/`
1

(
m
`

)
/C ′′`

}
≤
( m∑
`=2

C ′`

)
exp

{
− nt2∑m

`=2 4b
2/`
1

(
m
`

)
/C ′′`

}
.

Taking t2 = C2(log p/n), where C2 is another constant to be specified later, we have

P
{∣∣∣ k∑

`=2

(
m

`

)
H(`)
n (·; Pjk)

∣∣∣ ≥ C2(log p/n)
}
≤
( m∑
`=2

C ′`

)(1

p

)C2/{
∑m
`=2 4b

2/`
1 (m` )/C′′` }

. (A.1.36)

Putting (A.1.35) and (A.1.36) together, and choosing

C1 = 2mb1 +m(4b2
1 + 6γCγ)

1/2 and C2 = 12
m∑
`=2

b
2/`
1

(
m
`

)
C ′′`

,

we deduce

P
[
|Ûjk − Ujk| ≥

{
2mb1 +m(4b2

1 + 6γCγ)
1/2 + 12

m∑
`=2

b
2/`
1

(
m
`

)
C ′′`

} log p

n

]
≤
(

2 +
m∑
`=2

C ′`

) 1

p3
.

Then using Slutsky’s argument gives

P
[

max
j<k
|Ûjk −Ujk| ≥

{
2mb1 +m(4b2

1 + 6γCγ)
1/2 + 12

m∑
`=2

b
2/`
1

(
m
`

)
C ′′`

} log p

n

]
≤ 2 +

∑m
`=2C

′
`

2
· 1
p
,

which implies that, with probability at least 1− (1 +
∑m

`=2 C
′
`/2)p−1,

max
j<k
|Ûjk − Ujk| ≤

{
2mb1 +m(4b2

1 + 6γCγ)
1/2 + 12

m∑
`=2

b
2/`
1

(
m
`

)
C ′′`

} log p

n
.
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Hence for n ≥ 2, we have with probability no smaller than 1− (1 +
∑m

`=2 C
′
`/2)p−1,

max
j<k

Ûjk ≥ max
j<k

Ujk −max
j<k
|Ûjk − Ujk|

≥
{
Cγ − 2mb1 −m(4b2

1 + 6γCγ)
1/2 − 12

m∑
`=2

b
2/`
1

(
m
`

)
C ′′`

} log p

n
≥

5λ1

(
m
2

)
log p

n− 1
,

where the last inequality is satisfied by choosing Cγ large enough. Accordingly, for any given

Qα, the probability that

n− 1

λ1

(
m
2

) max
j<k

Ûjk ≥ 5 log p > 4 log p+ (µ1 − 2) log log p− Λ

λ1

+Qα

tends to 1 as p goes to infinity. The proof is thus completed.

A.1.2.6 Proof of Theorem 2.4.4

Proof of Theorem 2.4.4. In view of Corollary 2.4.2, the results follow from Lemma 2.4.1 and

the fact that Djk, Rjk, τ
∗
jk � Σ2

jk as Σjk → 0, which has been shown in the proof of Lemma

2.4.1.

A.1.3 Proofs for Section 2.6 of the main paper

A.1.3.1 Proof of Theorem 2.6.1

Proof of Theorem 2.6.1. The proof of Theorem 2.6.1 hinges on the identity (2.6.1), the fact

that random vectors of continuous margins almost surely have no ties among the values of

each coordinate, and that EhD ≥ 0 and EhR ≥ 0 (see Hoeffding (1948, p. 547) and Blum

et al. (1961, p. 490)).

The identity (2.6.1) now gives that Ehτ∗ ≥ 0 and that Ehτ∗ = 0 if and only if EhD =

EhR = 0, which in turn implies independence of the considered pair of random variables.
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A.1.3.2 Proof of Proposition 2.6.1

Proof of Proposition 2.6.1. The copula of (X, Y )> is given by Nelsen (2006, p. 56):

C(u, v) =


min(u, v), if |u− v| ≥ 1

2
,

max(0, u+ v − 1), if |u+ v − 1| ≥ 1
2
,

u+v
2
− 1

4
, otherwise.

We summarize the copula in Figure A.1a.

u

v

0

u

v

u+ v − 1

u+ v

2
− 1

4

1
2

1

1
2

1

(a) The copula of the circular uniform distri-
bution with its support marked in red.

u

v

C(u−, v−) = 0 C(u+, v−) = 0

C(u−, v+) = 0 C(u+, v+) = du
2

(u, v)

1
2

1
2

u− = u− du
2
, v− = 1

2
− u− du

2
,

u+ = u+ du
2
, v+ = 1

2
− u+ du

2
.

(b) Integral on part of the support.

Figure A.1: The copula of the circular uniform distribution.

Since both X and Y are continuous, by the arguments in Schweizer and Wolff (1981), we
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obtain

EhD = 30

∫
{F (x, y)− F1(x)F2(y)}2dF (x, y)

= 30

∫
{C(u, v)− uv}2dC(u, v)

and EhR = 90

∫
{F (x, y)− F1(x)F2(y)}2dF1(x)dF2(y)

= 90

∫
{C(u, v)− uv}2dudv.

We first compute EhD. Notice that ∂2C(u, v)/∂u∂v = 0 in [0, 1] × [0, 1] except for the

support of C(u, v) (marked in red in Figure A.1a). Therefore, we only need to compute the

integral on the support consisting of four line segments. In Figure A.1b, we illustrate how

to find dC(u, v) on the line segment from (0, 1/2) to (1/2, 0) (denoted by C1). We have

dC(u, v) = C(u+, v+)− C(u+, v−)− C(u−, v+) + C(u−, v−) =
du

2
,

and thus the integral on the line segment C1 is given by

30

∫
C1
{C(u, v)− uv}2dC(u, v) = 30

∫ 1/2

0

{
0− u

(1

2
− u
)}2 du

2
=

1

64
.

We can evaluate the integral on the other three line segments (denoted by C2, C3, C4, respec-

tively) similarly, and we find

EhD = 30

∫
C1+C2+C3+C4

{C(u, v)− uv}2dC(u, v) =
1

16
.

The computation of EhR = 90
∫
{C(u, v) − uv}2dudv = 1/16 is standard, and we omit

details. Finally, using the identity (2.6.1), we deduce that Ehτ∗ = 1/16.

A.2 More comments on τ ∗

First of all, we show that the identity (2.6.1) in the main paper may be false when ties exist.
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Example A.2.1. If we take zi = (b(i+ 2)/3c, i)> for i ∈ [6], then(
6

5

)−1 ∑
1≤i1<···<i5≤6

hD(zi1 , . . . ,zi5) = 1/2, hR(z1, . . . ,z6) = 3/2,

and
(

6

4

)−1 ∑
1≤i1<···<i4≤6

hτ∗(zi1 , . . . ,zi4) = 3/5.

In view of Example A.2.1, the proof of Theorem 2.6.1 cannot be directly extended to pairs

consisting of both discrete and continuous random variables, and the question if Bergsma–

Dassios’s conjecture is correct remains open in that regard. However, by the Lebesgue

decomposition theorem, in order to prove Bergsma–Dassios’s conjecture it suffices to prove

the case where the pair follows a mixture of discrete and singular measures.

We now provide a second proof of Theorem 2.6.1 for the absolute continuity case only.

It connects the correlation measures raised by Bergsma and Dassios (2014) and the one

in the proof of Proposition 9 in Yanagimoto (1970). We believe the resulting alternative

representation of the population τ ∗ is of independent interest, e.g., from the point of view of

multivariate extensions of τ ∗ as considered by Weihs et al. (2018).

Proposition A.2.1. For any pair of absolutely continuous random variables (X, Y )> ∈ R2

with joint distribution function F (x, y) and marginal distribution functions F1(x), F2(y), we

have

1

18
Ehτ∗

(i)
=

∫
F 2d(F + F1F2)−

∫
F 2d(FF1)− 2

∫
FF1d(FF2) +

∫
FF1d(F 2) +

1

18
(ii)
=

∫
F 2dF − 2

∫
FF1F2dF + 2

∫
F 2dF1dF2 −

1

9
(iii)
=

∫
(F − F1F2)2dF + 2

∫
(F − F1F2)2dF1dF2

=
1

30
EhD +

1

45
EhR,
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where the term on the righthand side of the identity (ii) is Yanagimoto’s correlation measure.

Proof of Proposition A.2.1. We prove identities (i)–(iii) sequentially. Let Ψ1,Ψ2,Ψ3 denote

the expressions on the right-hand side of identities (i), (ii), (iii), respectively.

Identity (i). Let {(Xi, Yi)
>}i∈[4] be four independent realizations of (X, Y )>. For

Bergsma–Dassios–Yanagimoto’s τ ∗, we have, by Equation (6) in Bergsma and Dassios (2014),

1

18
Ehτ∗ =

1

3
P{max(X1, X2) < min(X3, X4), max(Y1, Y2) < min(Y3, Y4)}

+
1

3
P{max(X1, X2) < min(X3, X4), max(Y3, Y4) < min(Y1, Y2)}

− 2

3
P{max(X1, X2) < min(X3, X4), max(Y1, Y3) < min(Y2, Y4)}. (A.2.1)

We study the three terms in (A.2.1) separately, starting from the first term. Using Fubini’s

theorem, we get

P{max(X1, X2) < min(X3, X4), max(Y1, Y2} < min(Y3, Y4)}

=

∫
P{max(X1, X2) < x, max(Y1, Y2) < y}dP{min(X3, X4) ≤ x, min(Y3, Y4) ≤ y}

=

∫
F (x, y)2dP{min(X3, X4) ≤ x, min(Y3, Y4) ≤ y}, (A.2.2)

where

P{min(X3, X4) ≤ x, min(Y3, Y4) ≤ y} = P{(A ∪B) ∩ (C ∪D)} = P(I ∪ II ∪ III ∪ IV )

and A := {X3 ≤ x}, B := {X4 ≤ X}, C := {Y3 ≤ y}, D := {Y4 ≤ y},

I := A ∩ C = {X3 ≤ x, Y3 ≤ y}, II := A ∩D = {X3 ≤ x, Y4 ≤ y},

III := B ∩ C = {X4 ≤ x, Y3 ≤ y}, IV := B ∩D = {X4 ≤ x, Y4 ≤ y}.
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From the inclusion–exclusion principle, we obtain

P{min(X3, X4) ≤ x, min(Y3, Y4) ≤ y}

= P(I) + P(II) + P(III) + P(IV )

− P(I ∩ II)− P(I ∩ III)− P(I ∩ IV )− P(II ∩ III)− P(II ∩ IV )− P(III ∩ IV )

+ P(I ∩ II ∩ III) + P(I ∩ II ∩ IV ) + P(I ∩ III ∩ IV ) + P(II ∩ III ∩ IV )

− P(I ∩ II ∩ III ∩ IV )

= F + F1F2 + F1F2 + F − FF2 − FF1 − F 2 − F 2 − FF1 − FF2 + F 2 + F 2 + F 2 + F 2 − F 2

= 2F + 2F1F2 − 2FF1 − 2FF2 + F 2. (A.2.3)

Plugging (A.2.3) into (A.2.2) implies that

P{max(X1, X2) < min(X3, X4), max(Y1, Y2} < min(Y3, Y4)}

=

∫
F 2d(2F + 2F1F2 − 2FF1 − 2FF2 + F 2). (A.2.4)

The second term in (A.2.1) can be written as

P{max(X1, X2) < min(X3, X4), max(Y3, Y4) < min(Y1, Y2)}

= P{max(X1, X2) < min(X3, X4)}

− P{max(X1, X2) < min(X3, X4), min(Y1, Y2) ≤ max(Y3, Y4)}

=

∫
P{max(X1, X2) < x}dP{min(X3, X4) ≤ x}

− P{max(X1, X2) < x, min(Y1, Y2) ≤ y}dP{min(X3, X4) ≤ x, max(Y3, Y4) ≤ y},

(A.2.5)

where we have

P{min(X3, X4) ≤ x} = P(A ∪B) = 2F1 − F 2
1 , (A.2.6)
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and

P{max(X1, X2) < x, min(Y1, Y2) ≤ y}

= P{max(X1, X2) < x, Y1 ≤ y}+ P{max(X1, X2) < x, Y2 ≤ y}

− P{max(X1, X2) < x, max(Y1, Y2) ≤ y}

= 2FF1 − F 2, (A.2.7)

and

P(min{X3, X4} ≤ x, max{Y3, Y4} ≤ y)

= P[{(X3 ≤ x) ∪ (X4 ≤ x)} ∩ {(Y3 ≤ y) ∩ (Y4 ≤ y)}]

= P[{A ∩ (C ∩D)} ∪ {B ∩ (C ∩D)}]

= 2FF2 − F 2. (A.2.8)

Plugging (A.2.6)–(A.2.8) into (A.2.5) yields

P{max(X1, X2) < min(X3, X4), max(Y3, Y4) < min(Y1, Y2)}

=

∫
F 2

1 d(2FF1 − F 2)−
∫

(2FF1 − F 2)d(2FF2 − F 2). (A.2.9)

Next we handle the third term in (A.2.1). We have by symmetry that

P{max(X1, X2) < min(X3, X4), max(Y1, Y3) < min(Y2, Y4)}

= P{max(X1, X2) < min(X4, X3), max(Y1, Y4) < min(Y2, Y3)}

= P{max(X2, X1) < min(X3, X4), max(Y2, Y3) < min(Y1, Y4)}

= P{max(X2, X1) < min(X4, X3), max(Y2, Y4) < min(Y1, Y3)}. (A.2.10)

We also notice that

P{max(X1, X2) < min(X3, X4)
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= P{max(X1, X2) < min(X3, X4), max(Y1, Y2) < min(Y3, Y4)}

+ P{max(X1, X2) < min(X3, X4), max(Y3, Y4) < min(Y1, Y2)}

+ P{max(X1, X2) < min(X3, X4), max(Y1, Y3) < min(Y2, Y4)}

+ P{max(X1, X2) < min(X3, X4), max(Y1, Y4) < min(Y2, Y3)}

+ P{max(X1, X2) < min(X3, X4), max(Y2, Y3) < min(Y1, Y4)}

+ P{max(X1, X2) < min(X3, X4), max(Y2, Y4) < min(Y1, Y3)} (A.2.11)

assuming marginal continuity of (X, Y )>. Combining (A.2.10) and (A.2.11) gives

P{max(X1, X2) < min(X3, X4), max(Y1, Y3) < min(Y2, Y4)}

=
1

4

[
P{max(X1, X2) < min(X3, X4)

− P{max(X1, X2) < min(X3, X4), max(Y1, Y2) < min(Y3, Y4)}

− P{max(X1, X2) < min(X3, X4), max(Y3, Y4) < min(Y1, Y2)}
]

=
1

4

{∫
(2FF1 − F 2)d(2FF2 − F 2)−

∫
F 2d(2F + 2F1F2 − 2FF1 − 2FF2 + F 2)

}
.

(A.2.12)

The identity (i) follows by plugging (A.2.4), (A.2.9), and (A.2.12) into (A.2.1).

Identity (ii). Next we prove that Ψ1 −Ψ2 = 0. A straightforward computation gives

Ψ1 −Ψ2

= −
∫
F 2d(F1F2)−

∫
F 2d(FF1)− 2

∫
FF1d(FF2) +

∫
FF1d(F 2) + 2

∫
FF1F2dF +

1

6

= −
∫∫

F 2∂F1

∂x

∂F2

∂y
dxdy −

∫∫
F 2∂F1

∂x

∂F

∂y
dxdy +

∫∫
F 2F1

∂2F

∂x∂y
dxdy

− 2

∫∫
FF1

∂F

∂x

∂F2

∂y
dxdy + 2

∫∫
FF1

∂F

∂x

∂F

∂y
dxdy +

1

6
. (A.2.13)
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To further simplify (A.2.13), notice that∫∫ (
F 2∂F1

∂x

∂F

∂y
+ 2FF1

∂F

∂x

∂F

∂y
+ F 2F1

∂2F

∂x∂y

)
dxdy =

∫∫
∂2(F 3F1/3)

∂x∂y
dxdy =

1

3
.

(A.2.14)

Adding (A.2.13) and (A.2.14) together yields

Ψ1 −Ψ2 = −
(∫∫

F 2∂F1

∂x

∂F2

∂y
dxdy + 2

∫∫
FF1

∂F

∂x

∂F2

∂y
dxdy

)
− 2

∫∫
F 2∂F1

∂x

∂F

∂y
dxdy +

1

2

= −
∫
∂F2

∂y

∫
∂(F 2F1)

∂x
dxdy − 2

∫
∂F1

∂x

∫
F 2∂F

∂y
dydx+

1

2

= −
∫
∂F2

∂y
F 2

2 dy − 2

∫
∂F1

∂x

F 3
1

3
dx+

1

2

= − 1

3
− 2
( 1

12

)
+

1

2
= 0,

which completes the proof of identity (ii).

Identity (iii). This identity was discovered by Yanagimoto (1970). To see this, it

suffices to show that

Ψ3 −Ψ2 =

∫
F 2

1F
2
2 dF − 4

∫
FF1F2dF1dF2 + 2

∫
F 2

1F
2
2 dF1dF2 +

1

9
= 0.

We start from the identity

1 =

∫∫
∂2(FF 2

1F
2
2 )

∂x∂y
dxdy =

∫∫
F 2

1F
2
2

∂2F

∂x∂y
dxdy +

∫∫
4FF1F2

∂F1

∂x

∂F2

∂y
dxdy

+

∫∫
2F 2

1F2
∂F

∂x

∂F2

∂y
dxdy +

∫∫
2F1F

2
2

∂F1

∂x

∂F

∂y
dxdy.

(A.2.15)

We also note that ∫∫
2FF1F2

∂F1

∂x

∂F2

∂y
dxdy +

∫∫
F 2

1F2
∂F

∂x

∂F2

∂y
dxdy
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=

∫
F2
∂F2

∂y

∫
∂(FF 2

1 )

∂x
dxdy =

∫
F 2

2

∂F2

∂y
dy =

1

3
, (A.2.16)

and ∫∫
2FF1F2

∂F1

∂x

∂F2

∂y
dxdy +

∫∫
F1F

2
2

∂F1

∂x

∂F

∂y
dxdy

=

∫
F1
∂F1

∂x

∫
∂(FF 2

2 )

∂y
dydx =

∫
F 2

1

∂F1

∂x
dx =

1

3
, (A.2.17)

and ∫∫
2F 2

1F
2
2

∂F1

∂x

∂F2

∂y
dxdy = 2

∫
F 2

1

∂F1

∂x
dx

∫
F 2

2

∂F2

∂y
dy = 2

(1

3

)(1

3

)
=

2

9
. (A.2.18)

Combining (A.2.15)–(A.2.18) concludes the claim.

A.3 Additional simulation results

First, we report the sizes and powers of the proposed tests with simulation-based critical

values (M = 5, 000) as shown in Table A.1. The table shows results only for Examples 2.5.1,

2.5.3, and 2.5.4 as the simulated powers under Example 2.5.2 were all perfectly one. It can

be observed that all sizes are now well controlled, with powers of the proposed tests only

slightly different from the ones without using simulation.

Next, in order to interpret the power in Examples 2.5.2–2.5.4, we consider the following

example.

Example 2.5.2–2.5.4 (continued). We consider modified data drawn as

Xα = αX + (1− α)E

where α ∈ [0, 1] represents the level of a desired signal, X is the same as that in Examples

2.5.2–2.5.4, respectively, and E ∼ Np(0, Ip) is independent of X.
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Table A.1: Empirical sizes and powers of simulation-based rejection threshold in Examples
2.5.1–2.5.4 (The powers under Example 2.5.2 are all perfectly 1.000 and hence omitted)

n p DHSD DHSR DHSτ∗ DHSD DHSR DHSτ∗ DHSD DHSR DHSτ∗ DHSD DHSR DHSτ∗

Example 2.5.1(a) Example 2.5.3(a) Example 2.5.3(b) Example 2.5.3(c)
100 50 0.053 0.053 0.053 0.964 0.964 0.965 0.746 0.651 0.694 0.639 0.591 0.611

100 0.051 0.051 0.050 0.955 0.954 0.955 0.731 0.636 0.676 0.638 0.581 0.607
200 0.045 0.045 0.044 0.943 0.944 0.945 0.698 0.602 0.643 0.609 0.549 0.580
400 0.045 0.046 0.046 0.930 0.931 0.932 0.674 0.577 0.624 0.592 0.524 0.557
800 0.054 0.051 0.051 0.921 0.921 0.923 0.651 0.548 0.594 0.567 0.490 0.526

200 50 0.050 0.053 0.051 0.991 0.991 0.991 0.896 0.853 0.872 0.822 0.800 0.810
100 0.048 0.048 0.047 0.984 0.985 0.985 0.874 0.824 0.847 0.803 0.775 0.787
200 0.046 0.045 0.044 0.983 0.984 0.984 0.852 0.794 0.820 0.785 0.757 0.769
400 0.051 0.058 0.055 0.983 0.984 0.984 0.842 0.778 0.805 0.766 0.738 0.751
800 0.042 0.044 0.046 0.978 0.978 0.979 0.809 0.746 0.776 0.741 0.708 0.727

Example 2.5.4(a) Example 2.5.4(b) Example 2.5.4(c)
100 50 0.081 0.085 0.080 0.096 0.094 0.096 0.121 0.124 0.126

100 0.079 0.074 0.077 0.074 0.074 0.074 0.088 0.090 0.092
200 0.052 0.059 0.056 0.067 0.069 0.068 0.072 0.072 0.074
400 0.064 0.064 0.064 0.059 0.057 0.056 0.059 0.058 0.065
800 0.051 0.048 0.048 0.058 0.054 0.052 0.061 0.064 0.059

200 50 0.099 0.099 0.098 0.110 0.114 0.112 0.115 0.120 0.115
100 0.060 0.064 0.063 0.081 0.084 0.080 0.090 0.091 0.087
200 0.066 0.067 0.071 0.046 0.046 0.044 0.080 0.070 0.079
400 0.058 0.062 0.058 0.060 0.070 0.069 0.059 0.058 0.058
800 0.045 0.049 0.050 0.052 0.050 0.050 0.061 0.060 0.062

The relationships between empirical powers (5,000 replicates) based on observations from

Xα and the value α for Examples 2.5.2–2.5.4 (continued) are summarized in Figures A.2–

A.5. As expected, the power of each test is monotonically increasing in α, i.e., as the signal

increases. Similar patterns as we discussed for Examples 2.5.2–2.5.4 can be found here. It

can be noticed that, the three proposed tests, followed by LDτ∗ , uniformly dominate the

other tests in Examples 2.5.2 and 2.5.3 (continued) that are sparse settings.
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Appendix B

APPENDIX OF CHAPTER 3

B.1 Proofs

Some further concepts and notation concerning U-statistics are needed in this section. For

any symmetric kernel h, any integer ` ∈ JmK, and any probability measure PZ , recall the

definition

h`(z1 . . . , z`; PZ) := Eh(z1 . . . , z`,Z`+1, . . . ,Zm),

of the kernel and define

h̃`(z1, . . . ,z`; PZ) := h`(z1, . . . ,z`; PZ)− Eh−
`−1∑
k=1

∑
1≤i1<···<ik≤`

h̃k(zi1 , . . . ,zik ; PZ),

where Z1, . . . ,Zm are m independent copies of Z ∼ PZ and Eh := Eh(Z1, . . . ,Zm). The

kernel as well as the corresponding U-statistic are said to be degenerate under PZ if h1(·) has

variance zero and completely degenerate if the variances of h1(Z1), . . . , hm−1(Z1, . . . ,Zm) all

are zero. We also have, for any (possibly dependent) random vectors Z ′1, . . . ,Z ′n,(
n

m

)−1 ∑
1≤i1<···<im≤n

h
(
Z ′i1 , . . . ,Z

′
im

)
= Eh+

m∑
`=1

(
n

`

)−1 ∑
1≤i1<···<i`≤n

(
m

`

)
h̃`

(
Z ′i1 , . . . ,Z

′
i`

; PZ

)
,

(the so-called Hoeffding decomposition with respect to PZ).

Notation. The cardinality of a set S is denoted as card(S) and its complement as S{. We

use⇒ to denote uniform convergence of functions The cumulative distribution function and

probability density function of the univariate standard normal distribution are denoted by Φ

and ϕ, respectively. Let ‖X‖Lr := (E|X|r)1/r stand for the Lr-norm of a random variable X.
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We use Lr−→ to denote convergence of random variables in the r-th mean. For random vectors

Xn,X ∈ Rd, we writeXn
Lr−→X if ‖Xn−X‖

Lr−→ 0. Let (X ,A) be a measurable space, and

let P and Q be two probability measures on (X ,A): we write P� µ and Q� µ if P and Q

are absolutely continuous with respect to a σ-finite measure µ on (X ,A). The total variation

and Hellinger distances between Q and P are denoted as TV(Q,P) := supA∈A |Q(A)−P(A)|

and HL(Q,P) := {
∫

2(1 −
√

dQ/dP)dP}1/2, respectively. We write Q(n) / P(n) for “Q(n) is

contiguous to P(n)”.

B.1.1 Proofs for Section 3.2

B.1.1.1 Proof of Propostion 3.2.1

Proof of Propostion 3.2.1. The proof is entirely similar to the proof of Proposition 2 in Weihs

et al. (2018) and hence omitted.

B.1.1.2 Proof of Example 3.2.1

Proof of Example 3.2.1. Item (a) is stated in Bergsma and Dassios (2014, Sec. 3.4). Item (b)

is given in Weihs et al. (2018, Proposition 1). Item (c) can be proved using Equation (3)

in Zhu et al. (2017). Items (d) and (e) can be proved using Proposition D.5 in Kim et al.

(2020c) and Theorem 7.2 in Kim et al. (2020b), respectively.

B.1.1.3 Proof of Lemma 3.2.1

Proof of Lemma 3.2.1. Provided that E[f1] and E[f2] exist and are finite, we have

E
[
kf1,f2,Hm

∗

(
(X11,X21), . . . , (X1m,X2m)

)]
= E

{∑
σ∈H

sgn(σ)f1(X1σ(1), . . . ,X1σ(m))
}{∑

σ∈H

sgn(σ)f2(X2σ(1), . . . ,X2σ(m))
}

= E
{
f1(X11,X12,X13,X14,X15, . . . ,X1m)− f1(X11,X13,X12,X14,X15, . . . ,X1m)
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− f1(X14,X12,X13,X11,X15, . . . ,X1m) + f1(X14,X13,X12,X11,X15, . . . ,X1m)
}

×
{
f2(X21,X22,X23,X24,X25, . . . ,X2m)− f2(X21,X23,X22,X24,X25, . . . ,X2m)

− f2(X24,X22,X23,X21,X25, . . . ,X2m) + f2(X24,X23,X22,X21,X25, . . . ,X2m)
}
.

The result follows.

B.1.1.4 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. The D-consistency of the pairs of kernels used in Example 3.2.1(a)

has been shown in Székely et al. (2007, Theorem 3(i)), Lyons (2013, Theorem 3.11) and

Lyons (2018, Item (iv)). The result for 3.2.1(b) is given in Weihs et al. (2018, Theorem 1),

that for 3.2.1(c) in Zhu et al. (2017, Proposition 1(i)), and that for 3.2.1(d) and 3.2.1(e) in

Kim et al. (2020b, p. 3435).

B.1.1.5 Proof of Lemma 3.2.2

Proof of Lemma 3.2.2. The lemma directly follows from the definition of µf1,f2,H (cf. Defini-

tion 3.2.1) and the fact that f1 and f2 are both orthogonally invariant.

B.1.1.6 Proof of Proposition 3.2.2

Proof of Proposition 3.2.2. To verify that the kernels used in Example 3.2.1(a),(c)–(e) are

orthogonally invariant, it suffices to notice that Ow − Ov = O(w − v), (Ow)>(Ov) =

w>O>Ov = w>v, and ‖Ow‖ =
√
w>w = ‖w‖ for any orthogonal matrix O ∈ Rd×d and

w,v ∈ Rd.
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B.1.2 Proofs for Section 3.4

B.1.2.1 Proof of Proposition 3.4.1

Proof of Proposition 3.4.1. The first part is trivial. We next prove the second part. The

function u 7→
(
F−1
χ2
d

(u)
)1/2 is continuous over [0, 1), and∫ 1

0

((
F−1
χ2
d

(u)
)1/2
)2

du =

∫ 1

0

F−1
χ2
d

(u)du = E[F−1
χ2
d

(U)] = d,

where U is uniformly distributed over [0, 1], and thus F−1
χ2
d

(U) is chi-square distributed with

d degrees of freedom and expectation d. Hence, JvdW(u) is weakly regular; it is not strongly

regular, however, since it is unbounded.

B.1.2.2 Proof of Proposition 3.4.2

B.1.2.2.1 Proof of Proposition 3.4.2(i)

Proof of Proposition 3.4.2(i). This follows immediately from Proposition B.2.1(iv) and the

independence between [G
(n)
1,±(X1i)]

n
i=1 and [G

(n)
2,±(X2i)]

n
i=1 under the null hypothesis.

B.1.2.2.2 Proof of Proposition 3.4.2(ii)

Proof of Proposition 3.4.2(ii). The desired result follows from combining Lemma 3.2.2 and

Proposition B.2.1(iii).

B.1.2.2.3 Proof of Proposition 3.4.2(iii)

Proof of Proposition 3.4.2(iii). We only prove the D-consistency part. Using Lemma 3.2.1, it

remains to prove that the independence of G1,±(X1) and G2,±(X2) implies the independence

ofX1 andX2. Notice that F± is P-almost surely invertible for any P ∈ Pac
d (Ambrosio et al.,

2008, Section 6.2.3 and Remark 6.2.11), and so is G±. The independence claim follows.
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B.1.2.2.4 Proof of Proposition 3.4.2(iv)

Proof of Proposition 3.4.2(iv). The main idea of the proof consists in bounding |W∼
(n)
µ
−Wµ|.

Let Y (n)
ki and Yki stand for G

(n)
k,±(Xki) and Gk,±(Xki), respectively. Notice that

W∼
(n)
J1,J2,µf1,f2,H

= (n)−1
m

∑
[i1,...,im]∈Inm

kf1,f2,H

(
(Y

(n)
1i1

,Y
(n)

2i1
), . . . , (Y

(n)
1im

,Y
(n)

2im
)
)
,

WJ1,J2,µf1,f2,H
= (n)−1

m

∑
[i1,...,im]∈Inm

kf1,f2,H

(
(Y1i1 ,Y2i1), . . . , (Y1im ,Y2im)

)
,

where

kf1,f2,H

(
(x11,x21), . . . , (x1m,x2m)

)
:=
{∑
σ∈H

sgn(σ)f1(x1σ(1), . . . ,x1σ(m))
}{∑

σ∈H

sgn(σ)f2(x2σ(1), . . . ,x2σ(m))
}
.

Since fk([Y
(n)
ki`

]m`=1) and fk([Yki` ]m`=1) are almost surely bounded by some constant CJk,fk , we

deduce ∣∣∣kf1,f2,H([(Y
(n)

1i`
,Y

(n)
2i`

)]m`=1

)
− kf1,f2,H

(
[(Y1i` ,Y2i`)]

m
`=1

)∣∣∣
≤ card(H) · CJ1,f1 ·

∑
σ∈H

∣∣∣f2

(
[Y

(n)
2σ(i`)

]m`=1

)
− f2

(
[Y2σ(i`)]

m
`=1

)∣∣∣
+ card(H) · CJ2,f2 ·

∑
σ∈H

∣∣∣f2

(
[Y

(n)
1σ(i`)

]m`=1

)
− f2

(
[Y1σ(i`)]

m
`=1

)∣∣∣,
recalling that card(H) denotes the number of permutations in the subgroup H. Moreover,∣∣∣W∼ (n)

J1,J2,µf1,f2,H
−WJ1,J2,µf1,f2,H

∣∣∣
≤ card(H)2 · CJ1,f1 ·

[
(n)−1

m

∑
[i1,...,im]∈Inm

∣∣∣f2

(
[Y

(n)
2i`

]m`=1

)
− f2

(
[Y2i` ]

m
`=1

)∣∣∣]
+ card(H)2 · CJ2,f2 ·

[
(n)−1

m

∑
[i1,...,im]∈Inm

∣∣∣f1

(
[Y

(n)
1i`

]m`=1

)
− f1

(
[Y1i` ]

m
`=1

)∣∣∣] a.s.−→ 0.
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This, together with the fact that WJ1,J2,µf1,f2,H

a.s.−→ µ±(X1,X2) by the strong consistency of

U-statistics, yields W∼
(n)
J1,J2,µf1,f2,H

a.s.−→ µ±(X1,X2).

B.1.2.3 Proof of Theorem 3.4.1

We first fix some notation and prove a property that will hold for all GSCs µ and associated

kernel functions considered in Example 3.2.1(a)–(e). For k = 1, 2, let y(n)
ki = J(u

∗(n)
ki ), where

u
∗(n)
ki , i ∈ JnK are the deterministic points forming the grid Gdk

n . Writing Y (n)
ki and Yki

for G
(n)
k,±(Xki) and Gk,±(Xki), respectively, let us show that

Ξ
(n)
k := sup

1≤i≤n
‖Y (n)

ki − Yki‖
a.s.−→ 0, k = 1, 2. (B.1.1)

Recall that, by definition of strong regularity, Jk is Lipschitz-continuous with some

constant Lk, strictly monotone, and satisfies Jk(0) = 0. Then we immediately have

|Jk(u)| ≤ Lk for all u ∈ [0, 1), and thus Y (n)
ki and Yki are almost surely bounded by

Lk. As long as PXk
∈ P#

dk
, in order to prove that Ξ

(n)
k

a.s.−→ 0, it suffices to show that

‖Jk(uk1)−Jk(uk2)‖ ≤ 2Lk‖uk1−uk2‖ for any uk1,uk2 ∈ Rdk with ‖uk1‖, ‖uk2‖ < 1. With-

out loss of generality, assume that ‖uk2‖ ≤ ‖uk1‖. If ‖uk2‖ = 0, the claim is obvious by

noticing |Jk(u)| ≤ Lku for u ∈ [0, 1) and then ‖Jk(uk1)‖ ≤ Lk‖uk1‖; otherwise we have

‖Jk(uk1)− Jk(uk2)‖ ≤
∥∥∥Jk(uk1)− Jk

(‖uk2‖
‖uk1‖

uk1

)∥∥∥+
∥∥∥Jk(‖uk2‖

‖uk1‖
uk1

)
− Jk(uk2)

∥∥∥
=
∣∣∣Jk(‖uk1‖)− Jk(‖uk2‖)

∣∣∣+
Jk(‖uk2‖)
‖uk2‖

·
∥∥∥‖uk2‖
‖uk1‖

uk1 − uk2

∥∥∥
≤ Lk

∣∣∣‖uk1‖ − ‖uk2‖
∣∣∣+ Lk

∥∥∥‖uk2‖
‖uk1‖

uk1 − uk2

∥∥∥ ≤ 2Lk‖uk1 − uk2‖.

This completes the proof of (B.1.1).

B.1.2.3.1 Proof of Theorem 3.4.1 (h = hdCov2)
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Proof of Theorem 3.4.1 (h = hdCov2). Recall that

fdCov
1 ([wi]

4
i=1) =

1

2
‖w1 −w2‖ and fdCov

2 ([wi]
4
i=1) =

1

2
‖w1 −w2‖,

with possibly different dimension for the inputs. Now, 1
2
‖Y (n)

ki1
− Y (n)

ki2
‖ and 1

2
‖Yki1 − Yki2‖

are almost surely bounded by Lk, since Y
(n)
ki and Yki are. Next,∣∣∣1

2
‖Y (n)

ki1
−Y (n)

ki2
‖− 1

2
‖Yki1 −Yki2‖

∣∣∣ ≤ 1

2
‖Y (n)

ki1
−Yki1‖+

1

2
‖Y (n)

ki2
−Yki2‖ ≤ sup

1≤i≤n
‖Y (n)

ki −Yki‖,

and we deduce that

(n)−1
4

∑
[i1,...,i4]∈In4

∣∣∣1
2
‖Y (n)

ki1
− Y (n)

ki2
‖ − 1

2
‖Yki1 − Yki2‖

∣∣∣ ≤ sup
1≤i≤n

‖Y (n)
ki − Yki‖

a.s.−→ 0.

Both conditions in (3.4.4) are satisfied, and the proof is thus completed.

B.1.2.3.2 Proof of Theorem 3.4.1 (h = hM)

Proof of Theorem 3.4.1 (h = hM). Recall that fM1 ([wi]
5
i=1) = fM2 ([wi]

5
i=1) = 1

2
1(w1,w2 �

w5), up to a change in input dimension for the two functions. It is obvious that fk({Y (n)
ki`
}m`=1)

and fk({Yki`}m`=1) are almost surely bounded. Next we verify the second condition in (3.4.4).

We have for k = 1, 2,∣∣∣1(Y
(n)
ki1

,Y
(n)
ki2
� Y (n)

ki5
)− 1(Yki1 ,Yki2 � Yki5)

∣∣∣ ≤ 1(B{k;i1,i2,i3,i4,i5
),

where

Bk;i1,i2,i3,i4,i5 :=
{
‖Y (n)

ki1
− Y (n)

ki5
‖ ≥ 2 Ξ

(n)
k , ‖Y (n)

ki2
− Y (n)

ki5
‖ ≥ 2 Ξ

(n)
k

}
.

Accordingly,

(n)−1
5

∑
[i1,...,i5]∈In5

∣∣∣1(Y
(n)
ki1

,Y
(n)
ki2
� Y (n)

ki5
)− 1(Yki1 ,Yki2 � Yki5)

∣∣∣
≤ (n)−1

3 card
{

[i1, i2, i5] ∈ In3 : ‖Y (n)
ki1
− Y (n)

ki5
‖<2 Ξ

(n)
k or ‖Y (n)

ki2
− Y (n)

ki5
‖<2 Ξ

(n)
k

}
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= (n)−1
3 card

{
[i1, i2, i5] ∈ In3 : ‖y(n)

ki1
− y(n)

ki5
‖ < 2 Ξ

(n)
k or ‖y(n)

ki2
− y(n)

ki5
‖ < 2 Ξ

(n)
k

}
a.s.−→ 0,

(B.1.2)

which completes the proof.

B.1.2.3.3 Proof of Theorem 3.4.1 (h = hD)

Proof of Theorem 3.4.1 (h = hD). Recall that fD1 ([wi]
5
i=1) = fD2 ([wi]

5
i=1) = 1

2
Arc(w1 −

w5,w2 − w5), up to a change in input dimension for the two functions. Obviously,

fk([Y
(n)
ki`

]m`=1) and fk([Yki` ]
m
`=1) are almost surely bounded. To verify the second condition

in (3.4.4), we start by bounding the difference between Arc(Y
(n)
ki1
− Y (n)

ki5
,Y

(n)
ki2
− Y (n)

ki5
) and

Arc(Yki1 − Yki5 ,Yki2 − Yki5).

For k = 1, 2, consider (yk1,yk2,yk5) ∈ (Rdk)3 such that

min{‖yk1 − yk5‖, ‖yk2 − yk5‖} ≥ η and ζ ≤ Arc(yk1 − yk5,yk2 − yk5) ≤ 1

2
− ζ,

where η and ζ will be specified later on. For (y′k1,y
′
k2,y

′
k5) ∈ (Rdk)3 satisfying ‖yki−y′ki‖ ≤ δ

for i = 1, 2, 5,

Arc(yk1 − yk5,yk1 − y′k5) ≤ 1

2π
arcsin

‖yk5 − y′k5‖
‖yk1 − yk5‖

≤ 1

2π
arcsin

δ

η
,

Arc(yk1 − y′k5,y
′
k1 − y′k5) ≤ 1

2π
arcsin

‖yk1 − y′k1‖
‖yk1 − y′k5‖

≤ 1

2π
arcsin

δ

η − δ
,

Arc(yk2 − yk5,yk2 − y′k5) ≤ 1

2π
arcsin

‖yk5 − y′k5‖
‖yk2 − yk5‖

≤ 1

2π
arcsin

δ

η
,

and Arc(yk2 − y′k5,y
′
k2 − y′k5) ≤ 1

2π
arcsin

‖yk2 − y′k2‖
‖yk2 − y′k5‖

≤ 1

2π
arcsin

δ

η − δ
.

Assuming that
1

2π

(
2 arcsin

δ

η
+ 2 arcsin

δ

η − δ

)
≤ ζ, (B.1.3)
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we obtain

|Arc(yk1 − yk5,yk2 − yk5)− Arc(y′k1 − y′k5,y
′
k2 − y′k5)| ≤ 1

2π

(
2 arcsin

δ

η
+ 2 arcsin

δ

η − δ

)
.

For δ ≤ 1/4, take η =
√
δ and ζ = 3

√
δ/2 such that (B.1.3) holds,

1

2π

(
2 arcsin

δ

η
+ 2 arcsin

δ

η − δ

)
=

1

2π

(
2 arcsin

√
δ + 2 arcsin

√
δ

1−
√
δ

)
≤ 1

2π

(
2 arcsin

√
δ + 2 arcsin 2

√
δ
)
≤ 1

2π

(
2
π

2

√
δ + 2

π

2
(2
√
δ)
)

=
3

2

√
δ = ζ.

It follows that for δ ≤ 1/4 and (yk1,yk2,yk5), (y′k1,y
′
k2,y

′
k5) ∈ (Rdk)3 such that

min{‖yk1 − yk5‖, ‖yk2 − yk5‖} ≥
√
δ,

3

2

√
δ ≤ Arc(yk1 − yk5,yk2 − yk5) ≤ 1

2
− 3

2

√
δ,

and ‖yki − y′ki‖ ≤ δ for i = 1, 2, 5,

we have

|Arc(yk1 − yk5,yk2 − yk5)− Arc(y′k1 − y′k5,y
′
k2 − y′k5)| ≤ 3

2

√
δ.

Then, for k = 1, 2,∣∣∣Arc(Y (n)
ki1
− Y (n)

ki5
,Y

(n)
ki2
− Y (n)

ki5
)− Arc(Yki1 − Yki5 ,Yki2 − Yki5)

∣∣∣
≤ 3

2

√
Ξ

(n)
k · 1(Ak;i1,i2,i3,i4,i5) +

(1

2
+

1

2

)
· 1(A{k;i1,i2,i3,i4,i5

) ≤ 3

2

√
Ξ

(n)
k + 1(A{k;i1,i2,i3,i4,i5

),

where

Ak;i1,i2,i3,i4,i5 :=
{

Ξ
(n)
k ≤

1

4
, ‖Y (n)

ki1
− Y (n)

ki5
‖ ≥

√
Ξ

(n)
k , ‖Y (n)

ki2
− Y (n)

ki5
‖ ≥

√
Ξ

(n)
k ,

and
3

2

√
Ξ

(n)
k ≤ Arc(Y

(n)
ki1
− Y (n)

ki5
,Y

(n)
ki2
− Y (n)

ki5
) ≤ 1

2
− 3

2

√
Ξ

(n)
k

}
,
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and, accordingly,

(n)−1
5

∑
[i1,...,i5]∈In5

∣∣∣1
2
Arc(Y

(n)
ki1
− Y (n)

ki5
,Y

(n)
ki2
− Y (n)

ki5
)− 1

2
Arc(Yki1 − Yki5 ,Yki2 − Yki5)

∣∣∣
≤ 1

2

(3

2

√
Ξ

(n)
k + 1

{
Ξ

(n)
k >

1

4

}
+ (n)−1

3 card
{

[i1, i2, i5] ∈ In3 : ‖Y (n)
ki1
− Y (n)

ki5
‖ <

√
Ξ

(n)
k , or ‖Y (n)

ki2
− Y (n)

ki5
‖ <

√
Ξ

(n)
k ,

or Arc(Y (n)
ki1
− Y (n)

ki5
,Y

(n)
i2
− Y (n)

ki5
) ∈

[
0,

3

2

√
Ξ

(n)
k

)
∪
(1

2
− 3

2

√
Ξ

(n)
k ,

1

2

]})
=

1

2

(3

2

√
Ξ

(n)
k + 1

{
Ξ

(n)
k >

1

4

}
+ (n)−1

3 card
{

[i1, i2, i5] ∈ In3 : ‖y(n)
ki1
− y(n)

ki5
‖ <

√
Ξ

(n)
k , or ‖y(n)

ki2
− y(n)

ki5
‖ <

√
Ξ

(n)
k ,

or Arc(y(n)
ki1
− y(n)

ki5
,y

(n)
ki2
− y(n)

ki5
) ∈

[
0,

3

2

√
Ξ

(n)
k

)
∪
(1

2
− 3

2

√
Ξ

(n)
k ,

1

2

]})
.

(B.1.4)

Since, for any sequence [δ(n)]∞n=1 tending to 0, it holds that

(n)−1
3 card

{
[i1, i2, i5] ∈ In3 : ‖y(n)

ki1
− y(n)

ki5
‖ <
√
δ(n), or ‖y(n)

ki2
− y(n)

ki5
‖ <
√
δ(n),

or Arc(y
(n)
ki1
− y(n)

ki5
,y

(n)
ki2
− y(n)

ki5
) ∈

[
0,

3

2

√
δ(n)
)
∪
(1

2
− 3

2

√
δ(n),

1

2

]}
→ 0,

we have shown that (B.1.4) converges to 0 almost surely. This completes the proof.

B.1.2.3.4 Proof of Theorem 3.4.1 (h = hR, hτ∗)

Proof of Theorem 3.4.1 (h = hR, hτ∗). The proof is similar to the proof of Theorem 3.4.1

(h = hD) and hence omitted.
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B.1.3 Proofs for Section 3.5

B.1.3.1 Proof of Proposition 3.5.1

Proof of Proposition 3.5.1. In view of Lemma 3 in Weihs et al. (2018), the claim readily

follows from the theory of degenerate U-statistics (Serfling, 1980, Chap. 5.5.2).

B.1.3.2 Proof of Theorem 3.5.1

Proof of Theorem 3.5.1. For k = 1, 2, let P
(n)
Jk,dk

and PJk,dk denote the distributions of W (n)
k1

and Wk1, respectively, and let again Y (n)
ki and Yki stand for G

(n)
k,±(Xki) and Gk,±(Xki),

respectively. Consider the Hoeffding decomposition

W∼
(n)
µ

=
m∑
`=1

(
m

`

)(
n

`

)−1 ∑
1≤i1<···<i`≤n

h̃µ,`

(
(Y

(n)
1i1

,Y
(n)

2i1
), . . . , (Y

(n)
1i`

,Y
(n)

2i`
); P

(n)
J1,d1
⊗ P

(n)
J2,d2

)
︸ ︷︷ ︸

H∼ n,`

,

(B.1.5)

of W∼
(n)
µ

with respect to the product measure P
(n)
J1,d1
⊗P

(n)
J2,d2

and the Hoeffding decomposition

Wµ =
m∑
`=1

(
m

`

)(
n

`

)−1 ∑
1≤i1<···<i`≤n

h̃µ,`

(
(Y1i1 ,Y2i1), . . . , (Y1i` ,Y2i`); PJ1,d1 ⊗ PJ2,d2

)
︸ ︷︷ ︸

Hn,`

.

(B.1.6)

of Wµ with respect to product measure PJ1,d1 ⊗ PJ2,d2 .

The proof is divided into three steps. The first step shows that nH∼ n,1
= nHn,1 = 0,

the second step that nH∼ n,2
− nHn,2 = oP(1). The third step verifies that nH∼ n,`

and nHn,`,

` = 3, 4, . . . ,m all are oP(1) terms.

Step I. Lemma 3 in Weihs et al. (2018) confirms that

h̃µ,1(·; P
(n)
J1,d1
⊗ P

(n)
J2,d2

) = 0 = h̃µ,1(·; PJ1,d1 ⊗ PJ2,d2),
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and thus nH∼ n,1
= nHn,1 = 0.

Step II. Lemma 3 in Weihs et al. (2018) shows that,(
m

2

)
· h̃µ,2

(
(y11,y21), (y12,y22); P

(n)
J1,d1
⊗ P

(n)
J2,d2

)
= g

(n)
1 (y11,y12)g

(n)
2 (y21,y22),

and
(
m

2

)
· h̃µ,2

(
(y11,y21), (y12,y22); PJ1,d1 ⊗ PJ2,d2

)
= g1(y11,y12)g2(y21,y22),

where g(n)
k and gk are defined in (3.5.5) and (3.5.2). To prove that nH∼ n,2

−nHn,2 = oP(1), it

suffices to show that

E
[
(nH∼ n,2

− nHn,2)2
]

= E
[( 1

n− 1

∑
(i,j)∈In2

g
(n)
1 (Y

(n)
1i ,Y

(n)
1j )g

(n)
2 (Y

(n)
2i ,Y

(n)
2j )− 1

n− 1

∑
(i,j)∈In2

g1(Y1i,Y1j)g2(Y2i,Y2j)
)2]

= o(1). (B.1.7)

We proceed in three sub-steps.

Step II-1. The theory of degenerate U-statistics (cf. Equation (7) of Section 1.6 in Lee

(1990)) yields that

E
[
(nHn,2)2

]
=

2n

n− 1
E
[
g1(Y11,Y12)2

]
E
[
g2(Y21,Y22)2

]
. (B.1.8)

Step II-2. We next deduce that

E
[
(nH∼ n,2

)(nHn,2)
]

= E
[( 1

n− 1

∑
(i,j)∈In2

g
(n)
1 (Y

(n)
1i ,Y

(n)
1j )g

(n)
2 (Y

(n)
2i ,Y

(n)
2j )

)( 1

n− 1

∑
(i,j)∈In2

g1(Y1i,Y1j)g2(Y2i,Y2j)
)]

→ 2E
[
g1(Y11,Y12)2

]
E
[
g2(Y21,Y22)2

]
. (B.1.9)
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By symmetry, we have

E
[
g

(n)
k (Y

(n)
ki ,Y

(n)
kj )gk(Yki,Ykj)

]
= E

[
g

(n)
k (Y

(n)
k1 ,Y

(n)
k2 )gk(Yk1,Yk2)

]
=: A

(n)
k ,

E
[
g

(n)
k (Y

(n)
k` ,Y

(n)
kj )gk(Yki,Ykj)

]
= E

[
g

(n)
k (Y

(n)
ki ,Y

(n)
kr )gk(Yki,Ykj)

]
= E

[
g

(n)
k (Y

(n)
k1 ,Y

(n)
k3 )gk(Yk1,Yk2)

]
=: B

(n)
k ,

E
[
g

(n)
k (Y

(n)
k` ,Y

(n)
kr )gk(Yki,Ykj)

]
= E

[
g

(n)
k (Y

(n)
k3 ,Y

(n)
k4 )gk(Yk1,Yk2)

]
=: C

(n)
k

for all distinct i, j, `, r, and also

A
(n)
k = E

[
g

(n)
k (Y

(n)
k1 ,Y

(n)
k2 )gk(Yk1,Yk2)

]
, (B.1.10)

A
(n)
k + (n− 2)B

(n)
k = E

[
g

(n)
k (Y

(n)
k1 ,Y

(n)
k2 )gk(Yk1,Yk2)

]
+
∑
`:`6=1,2

E
[
g

(n)
k (Y

(n)
k` ,Y

(n)
k2 )gk(Yk2,Yk2)

]
= − E

[
g

(n)
k (Y

(n)
k2 ,Y

(n)
k2 )gk(Yk1,Yk2)

]
, (B.1.11)

2B
(n)
k + (n− 3)C

(n)
k = E

[
g

(n)
k (Y

(n)
k3 ,Y

(n)
k1 )gk(Yk1,Yk2)

]
+ E

[
g

(n)
k (Y

(n)
k3 ,Y

(n)
k2 )gk(Yk1,Yk2)

]
+

∑
`:` 6=1,2,3

E
[
g

(n)
k (Y

(n)
k3 ,Y

(n)
k` )gk(Yk1,Yk2)

]
= − E

[
g

(n)
k (Y

(n)
k3 ,Y

(n)
k3 )gk(Yk1,Yk2)

]
. (B.1.12)

We claim that

A
(n)
k → E

[
gk(Yk1,Yk2)2

]
, (B.1.13)

A
(n)
k + (n− 2)B

(n)
k → − E

[
gk(Yk2,Yk2)gk(Yk1,Yk2)

]
= 0, (B.1.14)

2B
(n)
k + (n− 3)C

(n)
k → − E

[
gk(Yk3,Yk3)gk(Yk1,Yk2)

]
= 0. (B.1.15)

We only prove (B.1.13), as (B.1.14) and (B.1.15) are quite similar.

If Condition (3.5.6) holds, we obtain, since E
[
fk([Wki` ]

m
`=1)2

]
<∞, that

‖gk(Yk1,Yk2)‖L1 ≤ ‖gk(Yk1,Yk2)‖L2 <∞.
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To prove (B.1.13), we still need to show that Y (n)
ki

L2−→ Yki for k = 1, 2. Since the scores Jk,

k = 1, 2 are weakly regular (cf. Definition 3.4.2) and square-integrable, we obtain

lim
n→∞

n−1

n∑
r=1

J2
( r

n+ 1

)
=

∫ 1

0

J2(u)du,

and thus E‖Y (n)
ki ‖2 → E‖Yki‖2. Notice also that Y (n)

ki

a.s.−→ Yki. Using Vitali’s theorem

(Shorack, 2017, Chap. 3, Theorem 5.5) yields E‖Y (n)
ki − Yki‖2 → 0.

Because g(n)
k (yk1,yk2)⇒ gk(yk1,yk2), we have

E
[
|g(n)
k (Y

(n)
k1 ,Y

(n)
k2 )− gk(Y (n)

k1 ,Y
(n)
k2 )| · |gk(Yk1,Yk2)|

]
≤ ‖g(n)

k (Y
(n)
k1 ,Y

(n)
k2 )− gk(Y (n)

k1 ,Y
(n)
k2 )‖L∞ · ‖gk(Yk1,Yk2)‖L1 → 0. (B.1.16)

Next, since gk is Lipschitz-continuous, by the fact that Y (n)
ki

L2−→ Yki,

E
[
|gk(Y (n)

k1 ,Y
(n)
k2 )− gk(Yk1,Yk2)| · |gk(Yk1,Yk2)|

]
≤ ‖gk(Y (n)

k1 ,Y
(n)
k2 )− gk(Yk1,Yk2)‖L2 · ‖gk(Yk1,Yk2)‖L2 → 0; (B.1.17)

Combining (B.1.16) and (B.1.17) yields (B.1.13).

Having established (B.1.13)–(B.1.15), we obtain that

A
(n)
k → E

[
gk(Yk1,Yk2)2

]
, B

(n)
k = O(n−1) and C

(n)
k = o(n−1). (B.1.18)

Plugging (B.1.18) into the left-hand side of (B.1.9) gives

E
[( 1

n− 1

∑
(i,j)∈In2

g
(n)
1 (Y

(n)
1i ,Y

(n)
1j )g

(n)
2 (Y

(n)
2i ,Y

(n)
2j )

)( 1

n− 1

∑
(i,j)∈In2

g1(Y1i,Y1j)g2(Y2i,Y2j)
)]

=
n(n− 1)

(n− 1)2

{
2A

(n)
1 A

(n)
2 + 4(n− 2)B

(n)
1 B

(n)
2 + (n− 2)(n− 3)C

(n)
1 C

(n)
2

}
→ 2E

[
g1(Y11,Y12)2

]
E
[
g2(Y21,Y22)2

]
.

This completes the proof of (B.1.9).
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Step II-3. In order to prove (B.1.7), it remains to show that

E
[
(nH∼ n,2

)2
]
→ 2E

[
g1(Y11,Y12)2

]
E
[
g2(Y21,Y22)2

]
. (B.1.19)

Notice that nH∼ n,2
is a double-indexed permutation statistic. Applying Equations (2.2)–(2.3)

in Barbour and Eagleson (1986) yields E
[
nH∼ n,2

]
= nµ

(n)
1 µ

(n)
2 , and

Var(nH∼ n,2
) =

4n2

(n− 1)3(n− 2)2

(∑n
i=1{ζ

(n)
1i }2

n

)(∑n
i=1{ζ

(n)
2i }2

n

)
+

2n

n− 3

(∑
i 6=j{η

(n)
1ij }2

n(n− 1)

)(∑
i 6=j{η

(n)
2ij }2

n(n− 1)

)
,

where for k = 1, 2,

µ
(n)
k :=

1

n(n− 1)

∑
i 6=j

g
(n)
k (y

(n)
ki ,y

(n)
kj ),

ζ
(n)
ki :=

∑
j:j 6=i

{
g

(n)
k (y

(n)
ki ,y

(n)
kj )− µ(n)

k

}
,

η
(n)
kij := g

(n)
k (y

(n)
i ,y

(n)
j )− ζ

(n)
ki

n− 2
−

ζ
(n)
kj

n− 2
− µ(n)

k .

Direct computation gives

µ
(n)
k = − 1

n(n− 1)

n∑
i=1

g
(n)
k (y

(n)
ki ,y

(n)
ki ),

ζ
(n)
ki = − g(n)

k (y
(n)
ki ,y

(n)
ki ) +

1

n

n∑
j=1

g
(n)
k (y

(n)
kj ,y

(n)
kj ),

η
(n)
kij = g

(n)
k (y

(n)
i ,y

(n)
j ) +

g
(n)
k (y

(n)
ki ,y

(n)
ki )

n− 2
+
g

(n)
k (y

(n)
kj ,y

(n)
kj )

n− 2
− 1

(n− 1)(n− 2)

n∑
i=1

g
(n)
k (y

(n)
ki ,y

(n)
ki ).

Moreover, we can write E
[
nH∼ n,2

]
and Var(nH∼ n,2

) in terms of Y (n)
k1 and Y (n)

k2 :

E
[
nH∼ n,2

]
=

n

(n− 1)2
E
[
g

(n)
1 (Y

(n)
11 ,Y

(n)
11 )

]
E
[
g

(n)
2 (Y

(n)
21 ,Y

(n)
21 )

]
,
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Var(nH∼ n,2
) =

4n2

(n− 1)3(n− 2)2
Var

[
g

(n)
1 (Y

(n)
11 ,Y

(n)
11 )

]
Var

[
g

(n)
2 (Y

(n)
21 ,Y

(n)
21 )

]
+

2n

n− 3
Var

[
g

(n)
1 (Y

(n)
11 ,Y

(n)
12 ) +

g
(n)
1 (Y

(n)
11 ,Y

(n)
11 )

n− 2
+
g

(n)
1 (Y

(n)
12 ,Y

(n)
12 )

n− 2

]
× Var

[
g

(n)
2 (Y

(n)
21 ,Y

(n)
22 ) +

g
(n)
2 (Y

(n)
21 ,Y

(n)
21 )

n− 2
+
g

(n)
2 (Y

(n)
22 ,Y

(n)
22 )

n− 2

]
.

Using once again Condition (3.5.6), and by a similar argument as in the proof of (B.1.13),

we obtain

E
[
nH∼ n,2

]
→ n

(n− 1)2
E
[
g1(Y11,Y11)

]
E
[
g2(Y21,Y21)

]
→ 0, (B.1.20)

Var(nH∼ n,2
)→ 4n2

(n− 1)3(n− 2)2
Var

[
g1(Y11,Y11)

]
Var

[
g2(Y21,Y21)

]
+

2n

n− 3
Var

[
g1(Y11,Y12) +

g1(Y11,Y11)

n− 2
+
g1(Y12,Y12)

n− 2

]
× Var

[
g2(Y21,Y22) +

g2(Y21,Y21)

n− 2
+
g2(Y22,Y22)

n− 2

]
→ 2E

[
g1(Y11,Y12)2

]
E
[
g2(Y21,Y22)2

]
. (B.1.21)

Combining (B.1.20) and (B.1.21), we deduce that (B.1.19) holds.

Finally, Step II is completed by combining (B.1.8), (B.1.9), and (B.1.19) to deduce

(B.1.7).

Step III. Notice that supi1,...,im∈JmK E
[
fk([Wki` ]

m
`=1)2

]
<∞. Proving that E

[
(nH∼ n,`

)2
]

=

o(1) for ` = 3, 4, . . . ,m goes along the same steps as the proof of Theorem 4.2 in the

supplement of Shi et al. (2021a); it is omitted here. The fact that E
[
(nHn,`)

2
]

= o(1),

` = 3, 4, . . . ,m follows directly from the theory of degenerate U-statistics (cf. Equation (7)

of Section 1.6 in Lee (1990)). The proof is thus complete.
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B.1.3.3 Proof of Theorem 3.5.2

Proof of Theorem 3.5.2. The proof is similar to that of Theorem 3.5.1. The only difference

lies in proving (B.1.13)–(B.1.15) and (B.1.20)–(B.1.21). By the continuous mapping theo-

rem (van der Vaart, 1998, Theorem 2.3) and the Skorokhod construction (Shorack, 2017,

Chap. 3, Theorem 5.7(viii)), we can assume, without loss of generality, that W (n)
ki

a.s.−→Wki.

If Condition (3.5.7) holds, then (B.1.13) immediately follows from the dominated convergence

theorem and the definitions of g(n)
k and gk in (3.5.5) and (3.5.2). The proofs for (B.1.14),

(B.1.15), (B.1.20), and (B.1.21) are similar.

B.1.3.4 Proof of Proposition 3.5.2

B.1.3.4.1 Proof of Proposition 3.5.2 (h = hdCov2)

Proof of Proposition 3.5.2 (h = hdCov2). Condition (3.5.1) is obvious. Condition (3.5.4) is

satisfied in view of Theorem 5 in Székely et al. (2007). We next verify that condition (3.5.6)

is satisfied. To do so, let us first show that g(n)
k (yk1,yk2) ⇒ gk(yk1,yk2) for k = 1, 2. By

definitions (3.5.2) and (3.5.5),

g
(n)
k (yk1,yk2) := ‖yk1 − yk2‖ − E‖yk1 −W (n)

k3 ‖ − E‖W (n)
k4 − yk2‖+ E‖W (n)

k4 −W
(n)
k3 ‖,

and gk(yk1,yk2) := ‖yk1 − yk2‖ − E‖yk1 −Wk3‖ − E‖Wk4 − yk2‖+ E‖Wk4 −Wk3‖.

Noting that Jk, k = 1, 2 are continuous, we can assume, as in the proof of Theorem 3.5.2,

that W (n)
ki

a.s.−→Wki. Since the scores Jk are square-integrable, we obtain that E‖W (n)
ki ‖2 →

E‖Wki‖2. Using Vitali’s theorem (Shorack, 2017, Chap. 3, Theorem 5.5) yields W (n)
ki

L2−→

Wki. Therefore, we obtain∣∣∣E‖yk1 −W (n)
k3 ‖ − E‖yk1 −Wk3‖

∣∣∣ ≤ E‖W (n)
k3 −Wk3‖,∣∣∣E‖W (n)

k4 − yk2‖ − E‖Wk4 − yk2‖
∣∣∣ ≤ E‖W (n)

k4 −Wk4‖,
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∣∣∣E‖W (n)
k4 −W

(n)
k3 ‖ − E‖Wk4 −Wk3

∣∣∣ ≤ E‖W (n)
k3 −Wk3‖+ E‖W (n)

k4 −Wk4‖,

and, furthermore,∣∣∣g(n)
k (yk1,yk2)− gk(yk1,yk2)

∣∣∣ ≤ 2
(

E‖W (n)
k3 −Wk3‖+ E‖W (n)

k4 −Wk4‖
)
.

The uniform convergence g(n)
k (yk1,yk2)⇒ gk(yk1,yk2) follows. It is obvious that gk(yk1,yk2)

is Lipschitz-continuous, and E
[
fk(Wki1 , . . . ,Wki4)

2
]
< ∞ for all i1, . . . , i4 ∈ J4K as long as

J1, J2 are weakly regular.

B.1.3.4.2 Proof of Proposition 3.5.2 (h = hM , hD, hR, hτ∗)

Proof of Proposition 3.5.2 (h = hM , hD, hR, hτ∗). Condition (3.5.1) is obvious. Condition

(3.5.4) is satisfied for hD by Theorem 3(i) in Zhu et al. (2017). For h = hM , hR, hτ∗ , we

can prove condition (3.5.4) holds as well in a similar way. It is clear that condition (3.5.7) is

satisfied for all these four kernel functions.

B.1.3.5 Proof of Corollary 3.5.1

Proof of Corollary 3.5.1. Combining Proposition 3.5.1 and Theorem 3.5.1, one immediately

obtains the limiting null distribution of the rank-based statistic W∼
(n)
µ

.

B.1.3.6 Proof of Proposition 3.5.3

Proof of Proposition 3.5.3. Validity is a direct corollary of Corollary 3.5.1. Uniform valid-

ity then follows from validity and exact distribution-freeness. For any fixed alternative in

Pac
d1,d2,∞, it holds that W∼

(n)
µ

a.s.−→ µ±(X1,X2) > 0 as n → ∞. Thus, nW∼
(n)
µ

a.s.−→ ∞ and the

result follows.
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B.1.3.7 Proof of Theorem 3.5.3

Proof of Theorem 3.5.3. Let X∗ni and Xni, i ∈ JnK be independent copies of X∗ and X with

δ = δ(n), respectively. Let P(n) := ⊗ni=1P
(n)
i , Q(n) := ⊗ni=1Q

(n)
i , where P

(n)
i and Q

(n)
i are the

distributions of X∗ni and Xni, respectively. Define

Λ(n) := log
dQ(n)

dP(n)
=

n∑
i=1

log
qX(X∗ni; δ

(n))

qX(X∗ni; 0)
and T (n) := δ(n)

n∑
i=1

˙̀(X∗ni; 0).

We proceed in three steps. First, we clarify that Q(n) is contiguous to P(n) in order

for Le Cam’s third lemma (van der Vaart, 1998, Theorem 6.6) to be applicable. Next, we

derive the joint limiting null distribution of (nW∼
(n)
µ
,Λ(n))>. Lastly, we employ Le Cam’s third

lemma to obtain the asymptotic distribution of (nW∼
(n)
µ
,Λ(n))> under contiguous alternatives.

Step I. In view of Lehmann and Romano (2005, Example 12.3.7), Assumption 3.5.1

entails the contiguity Q(n) / P(n).

Step II. Next, we derive the limiting joint distribution of (nW∼
(n)
µ
,Λ(n))> under the null

hypothesis. To this end, we first obtain the limiting null distribution of (nHn,2, T
(n))>, where

Hn,2 is defined in (B.1.6). By condition (3.5.1), we write

Hn,2 =
1

n(n− 1)

∑
i 6=j

∞∑
v=1

λvψv(Y1i,Y2i)ψv(Y1j,Y2j),

where ψv is the normalized eigenfunction associated with λv and Yki = G∗k,±(X∗ki) for k = 1, 2.

For each positive integer K, consider the “truncated” U-statistic

Hn,2,K :=
1

n(n− 1)

∑
i 6=j

K∑
v=1

λvψv(Y1i,Y2i)ψv(Y1j,Y2j).

Note that nHn,2 and nHn,2,K can be written as

nHn,2 =
n

n− 1

{ ∞∑
v=1

λv

( n∑
i=1

ψv(Y1i,Y2i)√
n

)2

−
∞∑
v=1

λv

(∑n
i=1{ψv(Y1i,Y2i)}2

n

)}
,
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nHn,2,K =
n

n− 1

{ K∑
v=1

λv

( n∑
i=1

ψv(Y1i,Y2i)√
n

)2

−
K∑
v=1

λv

(∑n
i=1{ψv(Y1i,Y2i)}2

n

)}
.

To obtain the limiting null distribution of (nHn,2, T
(n))>, first consider the limit-

ing null distribution, for fixed K, of (nHn,2,K , T
(n))>. Let Sn,v be a shorthand for

n−1/2
∑n

i=1 ψv(Y1i,Y2i) and observe that

E[Sn,v] = E[T (n)] = 0, Var[Sn,v] = 1, Var[T (n)] = IX(0), and Cov[Sn,v, T
(n)]→ γvδ0.

where γv := Cov
[
ψv(Y1,Y2), ˙̀

(
(G−1

1,±(Y1),G−1
2,±(Y2)); 0

)]
. There exists at least one v ≥ 1

such that γv 6= 0. Indeed, applying Lemma 4.2 in Nandy et al. (2016) yields

{
ψv(y)

}
v∈Z>0

=
{
ψ1,v1(y1)ψ2,v2(y2)

}
v1,v2∈Z>0

,

where ψk,v(yk), v ∈ Z>0 are eigenfunctions associated with the non-zero eigenvalues

of the integral equations E[gk(yk,Wk2)ψk(Wk2)] = λkψk(yk) for k = 1, 2. Since{
ψ1,v1(y1)ψ2,v2(y2)

}
v1,v2∈Z≥0

(where ψk,v(yk) := 1 for v = 0, k = 1, 2) forms a complete

orthogonal basis of the set of square integrable functions, γv = 0 for all v ≥ 1 thus en-

tails that ˙̀(x; 0) is additively separable, which contradicts Assumption 3.5.1(iv). Therefore,

γv∗ 6= 0 for some v∗. Applying the multivariate central limit theorem (Bhattacharya and

Ranga Rao, 1986, Equation (18.24)), we deduce

(Sn,1, . . . , Sn,K , T
(n))>

P(n)

 (ξ1, . . . , ξK , VK)> ∼ NK+1

((
0K

0

)
,

(
Ip δ0v

δ0v
> δ2

0I

))
,

where I := IX(0) and v = (γ1, . . . , γK)>. Thus, VK can be expressed as

(
δ2

0I
)1/2{ K∑

v=1

cvξv +
(

1−
K∑
v=1

c2
v

)1/2

ξ0

}
where cv := I−1/2γv, and ξ0 is standard Gaussian, independent of ξ1, . . . , ξK . Then, by the
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continuous mapping theorem (van der Vaart, 1998, Theorem 2.3) and Slutsky’s theorem

(van der Vaart, 1998, Theorem 2.8),

(nHn,2,K , T
(n))>

P(n)

 

( K∑
v=1

λv(ξ
2
v − 1),

(
δ2

0I
)1/2{ K∑

v=1

cvξv +
(

1−
K∑
v=1

c2
v

)1/2

ξ0

})>
(B.1.22)

for any K. This entails

(nHn,2, T
(n))>

P(n)

 

( ∞∑
v=1

λv(ξ
2
v − 1),

(
δ2

0I
)1/2{ ∞∑

v=1

cvξv +
(

1−
∞∑
v=1

c2
v

)1/2

ξ0

})>
. (B.1.23)

Indeed, putting

MK :=
K∑
v=1

λv(ξ
2
v − 1), VK :=

(
δ2

0I
)1/2{ K∑

v=1

cvξv +
(

1−
K∑
v=1

c2
v

)1/2

ξ0

}
,

M :=
∞∑
v=1

λv(ξ
2
v − 1), and V :=

(
δ2

0I
)1/2{ ∞∑

v=1

cvξv +
(

1−
∞∑
v=1

c2
v

)1/2

ξ0

}
,

it suffices, in order to to prove (B.1.23), to show that, for any a, b ∈ R,∣∣∣E[ exp
{
ianHn,2 + ibT (n)

}]
− E

[
exp

{
iaM + ibV

}]∣∣∣→ 0 as n→∞. (B.1.24)

We have ∣∣∣E[ exp
{
ianHn,2 + ibT (n)

}]
− E

[
exp

{
iaM + ibV

}]∣∣∣
≤
∣∣∣E[ exp

{
ianHn,2 + ibT (n)

}]
− E

[
exp

{
ianHn,2,K + ibT (n)

}]∣∣∣
+
∣∣∣E[ exp

{
ianHn,2,K + ibT (n)

}]
− E

[
exp

{
iaMK + ibVK

}]∣∣∣
+
∣∣∣E[ exp

{
iaMK + ibVK

}]
− E

[
exp

{
iaM + ibV

}]∣∣∣ =: I + II + III, say,

where it follows from page 82 of Lee (1990) and Equation (4.3.10) in Koroljuk and Borovskich
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(1994) that

I ≤ E
∣∣∣ exp

{
ian(Hn,2 −Hn,2,K)

}
− 1
∣∣∣ ≤ {E

∣∣∣an(Hn,2 −Hn,2,K)
∣∣∣2}1/2

=
{ 2na2

n− 1

∞∑
v=K+1

λ2
v

}1/2

and

III ≤ E
∣∣∣ exp

{
ia(MK −M) + ib(VK − V )

}
− 1
∣∣∣ ≤ {E

∣∣∣a(MK −M) + b(VK − V )
∣∣∣2}1/2

≤
{

2
(

2a2

∞∑
v=K+1

λ2
v + 2b2δ2

0I
∞∑

v=K+1

c2
v

)}1/2

.

Since by condition (3.5.1)

∞∑
v=1

λ2
v = Var(g1(W11,W12)) · Var(g2(W21,W22)) ∈ (0,∞) and

∞∑
v=1

c2
v = I−1

∞∑
v=1

γ2
v ≤ 1,

we conclude that, for any ε > 0, there exists K0 such that I < ε/3 and III < ε/3 for all n

and all K ≥ K0. For this K0, we also have, by (B.1.22), that II < ε/3 for all n sufficiently

large; (B.1.24), hence (B.1.23), follow.

Now, as in van der Vaart (1998, Theorem 7.2),

Λ(n) − T (n) + δ2
0I/2

P(n)

−→ 0. (B.1.25)

Combining (B.1.23) and (B.1.25) yields

(nHn,2,Λ
(n))>

P(n)

 

( ∞∑
v=1

λv(ξ
2
v − 1),

(
δ2

0I
)1/2{ ∞∑

v=1

cvξv +
(

1−
∞∑
v=1

c2
v

)1/2

ξ0

}
− δ2

0I
2

)>
.

(B.1.26)

Equation (1.6.7) in Lee (1990, p. 30), along with the fact that Hn,1 = 0, implies that

(nW∼
(n)
µ
,Λ(n))> has the same limiting distribution as (B.1.26) under P(n).

Step III. Finally we employ the general form (van der Vaart, 1998, Theorem 6.6) of Le
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Cam’s third lemma, which by condition (3.5.4) entails

Q(n)(nW∼
(n)
µ
≤ q1−α)

→ E
[
1
( ∞∑
v=1

λv(ξ
2
v − 1) ≤ q1−α

)
· exp

{(
δ2

0I
)1/2( ∞∑

v=1

cvξv +
(

1−
∞∑
v=1

c2
v

)1/2

ξ0

)
− δ2

0I
2

}]
≤ E

[
1
{∣∣∣ξv∗∣∣∣≤(q1−α+

∑∞
v=1 λv

λv∗

)1/2}
· exp

{(
δ2

0I
)1/2( ∞∑

v=1

cvξv+
(

1−
∞∑
v=1

c2
v

)1/2

ξ0

)
− δ

2
0I
2

}]
= E

[
1
{∣∣∣ξv∗∣∣∣ ≤ (q1−α +

∑∞
v=1 λv

λv∗

)1/2}
· exp

{(
δ2

0I
)1/2(

cv∗ξv∗ +
(

1− c2
v∗

)1/2

ξ0

)
− δ2

0I
2

}]
= Φ

((q1−α +
∑∞

v=1 λv
λv∗

)1/2

− cv∗
(
δ2

0I
)1/2)

− Φ
(
−
(q1−α +

∑∞
v=1 λv

λv∗

)1/2

− cv∗
(
δ2

0I
)1/2)

≤ 2
(q1−α +

∑∞
v=1 λv

λv∗

)1/2

ϕ
({
|cv∗| ·

(
δ2

0I
)1/2

−
(q1−α +

∑∞
v=1 λv

λv∗

)1/2}
+

)
,

a quantity which is arbitrarily small for large enough δ0, irrespective of the sign of cv∗ .

B.1.3.8 Proof of Theorem 3.5.4

Proof of Theorem 3.5.4. This result is a standard result connecting the Fisher information

to the usual lower bound of rate n−1/2 (Groeneboom and Jongbloed, 2014, Chap. 6). Recall

thatX∗ni andXni, i ∈ JnK are independent copies ofX∗ andX, respectively, with δ = δ(n) =

n−1/2δ0. Recall P(n) := ⊗ni=1P
(n)
i , Q(n) := ⊗ni=1Q

(n)
i , where P

(n)
i and Q

(n)
i are the distributions

of X∗ni and Xni, respectively. It suffices to prove that for any small 0 < β < 1 − α, there

exists |δ0| = cβ such that, for all sufficiently large n, TV(Q(n),P(n)) < β, which is implied

by HL(Q(n),P(n)) < β using the fact that total variation and Hellinger distances satisfy

TV(Q(n),P(n)) ≤ HL(Q(n),P(n))

(Tsybakov, 2009, Equation (2.20)). It is also known (Tsybakov, 2009, p. 83) that

1− HL2(Q(n),P(n))

2
=

n∏
i=1

(
1− HL2(Q

(n)
i ,P

(n)
i )

2

)
.
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Lehmann and Romano (2005, Example 13.1.1) shows that, under Assumption 3.5.1,

n× HL2(Q
(n)
i ,P

(n)
i )→ δ2

0IX(0)

4
;

notice that here the definition of HL2(Q,P) differs with that in Lehmann and Romano (2005,

Definition 13.1.3) by a factor of 2. Therefore,

1− HL2(Q(n),P(n))

2
−→ exp

{
− δ2

0IX(0)

8

}
.

The desired result follows by taking cβ > 0 such that

exp
{
−
c2
βIX(0)

8

}
= 1− β2

8
.

This completes the proof.

B.1.3.9 Proof of Example 3.5.1

B.1.3.9.1 Proof of Example 3.5.1(i)

Proof of Example 3.5.1(i). We need to verify Assumption 3.5.2. Items (i) and (ii) are obvi-

ous. For (iii), following the proof of Lemma 3.2.1 in Gieser (1993), when X∗1 and X∗2 are

elliptically symmetric with parameters 0d1 , Σ1 and 0d2 , Σ2, respectively, we obtain

˙̀(x; 0) = −2(M1x2)>Σ−1
1 x1 · ρ1

(
x>1 Σ−1

1 x1

)
− 2(M2x1)>Σ−1

2 x2 · ρ2

(
x>2 Σ−1

2 x2

)
.

Consequently, the condition that E [‖Z∗k‖2ρk(‖Z∗k‖2)2] < ∞ for k = 1, 2 is sufficient for

IX(0) = E
[

˙̀(X; 0)2
]
<∞. If IX(0) = 0, then we must have

ρ1

(
x>1 Σ−1

1 x1

)
= ρ2

(
x>2 Σ−1

2 x2

)
= Cρ

for some constant Cρ 6= 0 and

(M1x2)>Σ−1
1 x1 + (M2x1)>Σ−1

2 x2 = x>1 Σ−1
1 (M1Σ2 + Σ1M

>
2 )Σ−1

2 x2 = 0
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for all x1,x2. This contradicts the assumption that Σ1M
>
2 + M1Σ2 6= 0 and completes the

proof.

B.1.3.9.2 Proof of Example 3.5.1(ii)

Proof of Example 3.5.1(ii). For the multivariate normal, φk(t) = exp(−t/2) and ρk(t) =

−1/2, so that all conditions in Example 3.5.1(i) are satisfied. For a multivariate t-distribution

with νk degrees of freedom,

φk(t) = (1 + t/νk)
−(νk+dk)/2 and ρk(t) = −2−1(1 + dk/νk)(1 + t/νk)

−1.

It is easily checked that all conditions in Example 3.5.1(i) are satisfied when νk > 2; see

Gieser (1993, p. 44–46).

B.1.3.10 Proof of Example 3.5.2

Proof of Example 3.5.2. Since q∗ is continuous and has compact support, it is upper bounded

by some constant, say Cq > 1, and then Assumption 3.5.3(i) holds with δ∗ = C−1
q . The rest

of Assumption 3.5.3 can be easily verified.

B.1.3.11 Proof of Proposition 3.5.4

Proof of Propositiion 3.5.4. (1) Konijn family. It is clear that Assumption 3.5.1(i),(iii) is

satisfied. Gieser (1993, Appendix B, p. 105–107) shows that Assumption 3.5.2 implies As-

sumption 3.5.1(ii). To verify Assumption 3.5.1(iv), notice that

˙̀(x; 0) = −2(M1x2)>
(
∇q1(x1)

/
q1(x1)

)
− 2(M2x1)>

(
∇q2(x2)

/
q2(x2)

)
following the proof of Lemma 3.2.1 in Gieser (1993).
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(2) Mixture family. Direct computation yields that

˙̀(x; δ) =
q∗(x)− q1(x1)q2(x2)

(1− δ){q1(x1)q2(x2)}+ δq∗(x)
.

The rest directly follows from Theorem 12.2.1 in Lehmann and Romano (2005).

B.2 Auxiliary results

B.2.1 Auxiliary results for Section 3.2

The concept of GSC unifies a surprisingly large number of well-known dependence measures.

Moreover, only two types of subgroups are needed, namely, Hm
τ := 〈(1 2)〉 = {(1), (1 2)} ⊆

Sm for m = 2 and Hm
∗ := 〈(1 4), (2 3)〉 = {(1), (1 4), (2 3), (1 4)(2 3)} ⊆ Sm for m ≥ 4. The

following result illustrates this fact with four classical examples of univariate dependence

measures, namely, the tau of Kendall (1938), the D of Hoeffding (1948), the R of Blum et al.

(1961), and the τ ∗ of Bergsma and Dassios (2014) which, as shown by Drton et al. (2020), is

connected to the work of Yanagimoto (1970). Below, we write w = (w1, . . . , wm) 7→ fk(w),

k = 1, 2 for the kernel functions of anmth order univariate GSC; note that not all components

of w need to have an impact on fk(w): see, for instance the kernel f1 of the 6th order Blum–

Kiefer–Rosenblatt GSC, which is mapping w = (w1, . . . , w6) to R≥0 but does not depend on

w6 (f2 does).

Example B.2.1 (Examples of univariate GSCs).

(a) Kendall’s tau is a 2nd order GSC with H = H2
τ and

f1(w) = f2(w) = 1(w1 < w2) on R
2,

which can be proved as follows:

µf1,f2,H2
τ
(X1, X2) := E[kf1,f2,H2

τ
((X11, X21), (X12, X22))]
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= E[{1(X11 < X12)− 1(X12 < X11)}{1(X21 < X22)− 1(X22 < X21)}]

= E[sign(X11 −X12) sign(X21 −X22)] =: τ ;

see also Example 5 in Lee (1990, Chapter 1.2) for the last expression of Kendall’s τ ;

(b) Hoeffding’s D is a 5th order GSC with H = H5
∗ and

f1(w) = f2(w) =
1

2
1(max{w1, w2} ≤ w5) on R

5;

(c) Blum–Kiefer–Rosenblatt’s R is a 6th order GSC with H = H6
∗ and

f1(w) =
1

2
1(max{w1, w2} ≤ w5), f2(w) =

1

2
1(max{w1, w2} ≤ w6) on R

6;

(d) Bergsma–Dassios–Yanagimoto’s τ ∗ is a 4th order GSC with H = H4
∗ and

f1(w) = f2(w) = 1(max{w1, w2} < min{w3, w4}) on R
4.

Remark B.2.1. Distinct choices of the kernels f1 and f2 do not necessarily imply distinct

GSCs. For example, Weihs et al. (2018, Proposition 1(ii)) showed that Hoeffding’s D in

Example B.2.1(b) is a 5th order GSC with H = H5
∗ also for

f1(w) = f2(w) =
1

2
1(max{w1, w2} ≤ w5 < max{w3, w4}) on R

5;

similarly, for Blum–Kiefer–Rosenblatt’s R, the kernels in Example B.2.1(c) can be replaced

with

f1(w) =
1

2
1(max{w1, w2} ≤ w5 < max{w3, w4}) on R

6,

f2(w) =
1

2
1(max{w1, w2} ≤ w6 < max{w3, w4}) on R

6.
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B.2.2 Auxiliary results for Section 3.3

The next proposition collects several properties of center-outward distribution functions.

Proposition B.2.1. Let F± be the center-outward distribution function of P ∈ Pac
d . Then,

(i) (Hallin, 2017, Proposition 4.2(i), Hallin et al., 2021a, Proposition 2.1(i),(iii)) F± is a

probability integral transformation of Rd, namely, Z ∼ P if and only if F±(Z) ∼ Ud;

(ii) (Hallin et al., 2021a, Proposition 2.1(ii)) if Z ∼ P, ‖F±(Z)‖ is uniform over [0, 1),

F±(Z)/‖F±(Z)‖ is uniform over the sphere Sd−1, and they are mutually independent.

Writing FZ± for the center-outward distribution function of Z ∼ P ∈ Pac
d ,

(iii) (Hallin et al., 2020, Proposition 2.2) for any v ∈ Rd, a ∈ R>0, and orthogonal d × d

matrix O,

Fv+aOZ
± (v + aOz) = OFZ± (z) for all z ∈ Rd.

Letting Z1, . . . ,Zn be independent copies of Z ∼ P ∈ Pac
d with center-outward distribution

function F±,

(iv) (Hallin, 2017, Proposition 6.1(ii), Hallin et al., 2021a, Proposition 2.5(ii)) for any

decomposition n0, nR, nS of n, the random vector [F
(n)
± (Z1), . . . ,F

(n)
± (Zn)] is uniformly

distributed over all distinct arrangements of the grid Gd
n;

(v) (del Barrio et al., 2018, Proof of Theorem 3.1, Hallin et al., 2021a, Proof of Proposition

3.3) as nR and nS →∞, for every i ∈ JnK,∥∥∥F(n)
± (Zi)− F±(Zi)

∥∥∥ a.s.−→ 0.

Proof of Proposition B.2.1. We give an independent proof of part (iii). In view of Definition

3.3.1, there exists a convex function Ψ such that FZ± = ∇Ψ. It is obvious that Fv+aOZ
±
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defined implicitly by

Fv+aOZ
± (v + aOz) = OFZ± (z),

satisfies (ii) and (iii) in Definition 3.3.1. It only remains, thus, to construct a convex function

Ψ∗ such that Fv+aOZ
± = ∇Ψ∗. Noting that Fv+aOZ

± (z) = OFZ± (a−1O−1(z − v)), it is easy

to check that z 7→ Ψ∗(z) := aΨ (a−1O−1(z − v)) is convex, and thus continuous and almost

everywhere differentiable, with ∇Ψ∗(v + aOZ) = O∇Ψ(z).

Proposition B.2.2. (Hallin, 2017, Proposition 5.1, del Barrio et al., 2018, Theorem 3.1,

del Barrio et al., 2020, Theorem 2.5, and Hallin et al., 2021a, Proposition 2.3) Consider the

following classes of distributions:

• the class P+
d of distributions P ∈ Pac

d with nonvanishing probability density, namely,

with Lebesgue density f such that, for all D > 0 there exist constants λD;f < ΛD;f ∈

(0,∞) such that λD;f ≤ f(z) ≤ ΛD;f for all ‖z‖ ≤ D;

• the class Pconv
d of distributions P ∈ Pac

d with convex support supp(P) and a density that

is nonvanishing over this support, namely, with density f such that, for all D > 0 there

exist constants λD;f < ΛD;f ∈ (0,∞) such that λD;f ≤ f(z) ≤ ΛD;f for all z ∈ supp(P)

with ‖z‖ ≤ D;

• the class P±d of distributions P ∈ Pac
d that are push-forwards of Ud of the form

P = ∇Υ]Ud (∇Υ the gradient of a convex function) and a homeomorphism from the

punctured ball Sd\{0d} to ∇Υ(Sd\{0d}) such that ∇Υ({0d}) is compact, convex, and

has Lebesgue measure zero;

• the class P#
d of all distributions P ∈ Pac

d such that, denoting by F
(n)
± the sample distri-

bution function computed from an n-tuple Z1, . . . ,Zn of independent copies of Z ∼ P,

max
1≤i≤n

∥∥∥F(n)
± (Zi)− F±(Zi)

∥∥∥ a.s.−→ 0

as nR and nS →∞ (a Glivenko-Cantelli property).
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It holds that P+
d ( Pconv

d ( P±d ⊆ P
#
d ( Pac

d .

B.2.3 Auxiliary results for Section 3.4

The time complexity of computing the optimal matching and nearly optimal matchings is

summarized in the following proposition.

Proposition B.2.3. The optimal matching problem (3.3.1) yielding [G
(n)
1,±(X1i)]

n
i=1 and

[G
(n)
2,±(X2i)]

n
i=1 can be solved in O(n3) time via the refined Hungarian algorithm (Dinic and

Kronrod, 1969; Tomizawa, 1971; Edmonds and Karp, 1970, 1972). Moreover,

(i) if we assume that cij, i, j ∈ JnK all are integers and bounded by some (positive) integer

N , which can be achieved by scaling and rounding, then there exists an optimal matching

algorithm solving the problem in O(n5/2 log(nN)) time (Gabow and Tarjan, 1989);

(ii) if d = 2 and cij, i, j ∈ JnK all are integers and bounded by some (positive) inte-

ger N , there exists an exact an optimal matching algorithm solving the problem in

O(n3/2+δ log(N)) time for any arbitrarily small constant δ > 0 (Sharathkumar and

Agarwal, 2012);

(iii) if d ≥ 3, there is an algorithm computing a (1 + ε)-approximate perfect matching in

O
(
n3/2ε−1τ(n, ε) log4(n/ε) log (max cij/min cij)

)
time,

where a (1+ε)-approximate perfect matching for ε > 0 is a bijection σ from JnK to itself

such that
∑n

i=1 ciσ(i) is no larger than (1 + ε) times the cost of the optimal matching

and τ(n, ε) is the query and update time of an ε/c-approximate nearest neighbor data

structure for some constant c > 1 (Agarwal and Sharathkumar, 2014).

Once [G
(n)
1,±(X1i)]

n
i=1 and [G

(n)
2,±(X2i)]

n
i=1 are obtained, a naive approach to the computation

of W∼
(n), on the other hand, requires at most a O(nm) time complexity. Great speedups are
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possible, however, in particular cases and the next proposition summarizes the results for

the various center-outward rank-based statistics listed in Example 3.4.1.

Proposition B.2.4. Assuming that [G
(n)
1,±(X1i)]

n
i=1 and [G

(n)
2,±(X2i)]

n
i=1 have been previously

obtained, one can compute

(i) W∼
(n)
dCov in O(n2) time (Székely and Rizzo, 2013, Definition 1, Székely and Rizzo, 2014,

Definition 2, Proposition 1, Huo and Székely, 2016, Lemma 3.1)

(ii) W∼
(n)
M

in O(n(log n)d1+d2−1) time (Weihs et al., 2018, p. 557, end of Sec. 5.2),

(iii) W∼
(n)
D

in O(n3) time (Zhu et al., 2017, Theorem 1),

(iv) W∼
(n)
R

in O(n4) time as proved in Section A.3.4 of the supplement,

(v) W∼
(n)
τ∗

in O(n4) time by definition.

If, moreover, approximate values are allowed, one can compute

(i) approximate W∼
(n)
dCov in O(nK log n) time (Huo and Székely, 2016, Theorem 4.1, Chaud-

huri and Hu, 2019, Theorem 3.1),

(ii) approximate W∼
(n)
D

in O(nK log n) time (Weihs et al., 2018, p. 557),

(iii) approximate W∼
(n)
R

in O(nK log n) time (Drton et al., 2020, Equation (6.1), Weihs

et al., 2018, p. 557, Even-Zohar and Leng, 2021, Corollary 4),

(iv) approximate W∼
(n)
τ∗

in O(nK log n) time (Even-Zohar and Leng, 2021, Corollary 4).

These approximations consider random projections to speed up computation; K stands for

the number of random projections. See also Huang and Huo (2017, Sec. 3.1).

Proof of Proposition B.2.4. We only illustrate how to efficiently compute U-statistic esti-

mates of Hoeffding’s multivariate projection-averagingD and Blum–Kiefer–Rosenblatt’s mul-

tivariate projection-averaging R. The other claims straightforwardly follow from the sources

provided in the proposition.
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Zhu et al. (2017) showed how to efficiently compute a V-statistic estimate of Hoeffding’s

multivariate projection-averaging D. Let us show how to efficiently compute the correspond-

ing U-statistic. We define arrays (ak`rs)`,r,s∈JnK for k = 1, 2 asak`rs := Arc(yk` − yks,ykr − yks) if [`, r, s] ∈ In3 ,

ak`rs := 0 otherwise.

Their U-centered versions (Ak`rs)`,r,s∈JnK for k = 1, 2 are

Ak`rs :=


ak`rs −

1

n− 3

n∑
i=1

akirs −
1

n− 3

n∑
j=1

ak`js +
1

(n− 2)(n− 3)

n∑
i,j=1

akijs if [`, r, s] ∈ In3 ,

0 otherwise.

Then,(
n

5

)−1 ∑
i1<···<i5

hD

(
(y1i1 ,y2i1), . . . , (y1i5 ,y2i5)

)
=

1

n(n− 1)(n− 4)

∑
[`,r,s]∈In3

A1`rsA2`rs,

which clearly has O(n3) complexity.

Turning to Blum–Kiefer–Rosenblatt’s multivariate projection-averaging R, define, for

k = 1, 2, the arrays (bk`rst)`,r,s,t∈JnK asb1`rst := Arc(y1` − y1s,y1r − y1s) and b2`rst := Arc(y2` − y2t,y2r − y2t) if [`, r, s, t] ∈ In4 ,

b1`rst := 0 and b2`rst := 0 otherwise.

Their U-centered versions (Bk`rs)k,`,r,s∈JnK for k = 1, 2 are

Bk`rst :=



bk`rst −
1

n− 4

n∑
i=1

bkirst −
1

n− 4

n∑
j=1

bk`jst +
1

(n− 3)(n− 4)

n∑
i,j=1

bkijst

if [`, r, s, t] ∈ In4 ,

0 otherwise.
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Then,(
n

6

)−1 ∑
i1<···<i6

hR

(
(y1i1 ,y2i1), . . . , (y1i6 ,y2i6)

)
=

1

n(n− 1)(n− 2)(n− 5)

∑
[`,r,s,t]∈In4

B1`rstB2`rst,

which clearly has O(n4) complexity. This completes the proof.
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Appendix C

APPENDIX OF CHAPTER 4

C.1 Proofs

Throughout the proofs below, all the claims regarding conditional expectations, conditional

variances, and conditional covariances are in the almost sure sense.

C.1.1 Proof of Proposition 4.2.2 (ξ∗n)

Proof of Proposition 4.2.2 (ξ∗). Equation (21) in Dette et al. (2013) states that

B̂2n − B̃2n − C1n − C2n = oP(n−1/2),

but tracking a glitch in signs the equation should in fact be

B̂2n − B̃2n + C1n + C2n = oP(n−1/2).

Accordingly, a revised version of Equations (24)–(26) in Dette et al. (2013) shows that,

n1/2(ξ∗n − ξ) =
12

n1/2

n∑
i=1

(Zi − EZi) + oP(1) (C.1.1)

where Zi := Zi,1 − Zi,2 − Zi,3 with

Zi,1 :=

∫ 1

0

1
{
FX2

(
X2i

)
≤ u2

}
τ
(
FX1

(
X1i

)
, u2

)
du2,

Zi,2 :=

∫ 1

0

∫ 1

0

1
{
FX1

(
X1i

)
≤ u1

}
τ
(
u1, u2

) ∂

∂u1

τ
(
u1, u2

)
du1du2,

Zi,3 :=

∫ 1

0

∫ 1

0

1
{
FX2

(
X2i

)
≤ u2

}
τ
(
u1, u2

) ∂

∂u2

τ
(
u1, u2

)
du1du2,
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τ(u1, u2) = ∂C(u1, u2)/∂u1, and C(u1, u2) is the copula of (X1, X2). Since the first term on

the right hand side of (C.1.1) has finite variance (see computation on pages 34–35 of Dette

et al. (2013)), we deduce that

ξ∗n
p−→ ξ.

This completes the proof.

C.1.2 Proof of Proposition 4.2.4(ii)

Proof of Proposition 4.2.4(ii). Applying (C.1.1), it holds under the null that

C(u1, u2) = u1u2, τ(u1, u2) = u2.

Accordingly,

Zi,1 = Zi,3 =

∫ 1

0

1
{
FX2

(
X2i

)
≤ u2

}
u2du2 =

1

2

[
1−

{
FX2

(
X2i

)}2]
and Zi,2 = 0,

which yields

n1/2ξ∗n
p−→ 0. (C.1.2)

This completes the proof.

C.1.3 Proof of Remark 4.3.1

Proof of Remark 4.3.1. Recall that fX(x; ∆) denotes the density of X with ∆. Denote

˙̀(x; ∆) :=
∂

∂∆
log fX(x; ∆).

These definitions make sense by Assumption 4.3.1(i),(ii), and we may write IX(0) =

E[{ ˙̀(Y ; 0)}2]. Notice that Y is distributed as X with ∆ = 0. Since Y = A−1
∆ X is an
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invertible linear transformation, the density of X can be expressed as

fX(x; ∆) = | det(A∆)|−1fY (A−1
∆ x),

where fY (y) = fY (y1, y2) = f1(y1)f2(y2). Direct computation yields

˙̀(x; 0) = −x1

{
ρ2

(
x2

)}
− x2

{
ρ1

(
x1

)}
. (C.1.3)

Thus E{(Yk)2} <∞ and E[{ρk(Yk)}2] <∞ for k = 1, 2 will imply IX(0) = E[{ ˙̀(Y ; 0)}2] <

∞ under the Konijn alternatives. Also, E[{ρk(Yk)}2] < ∞ implies that E{ρk(Yk)} = 0 by

Lemma A.1 (Part A) in Johnson and Barron (2004).

C.1.4 Proof of Example 4.3.1

Proof of Example 4.3.1. Assumption 4.3.1(i) is satisfied since fk(z) > 0, k = 1, 2 for all real

z. Assumption 4.3.1(iii) holds in view of (C.1.3); notice that ˙̀(x; 0) can never always be 0.

For Assumption 4.3.1(ii), if ρk(z) is constant, then fk(z) is either constant or proportional

to eCz with some constant C for all real z, which is impossible. Then Assumption 4.3.1 is

satisfied.

Regarding the special case, without loss of generality, we can assume Y1 and Y2 to be

standard normal or standard t-distributed. For the standard normal, we have ρk(z) = −t and

thus (4.3.2) is satisfied. For the standard t-distribution with νk degrees of freedom, we have

ρk(z) = −z(1 + 1/νk)/(1 + z2/νk). It is easy to check (4.3.2) is satisfied when νk > 2.

C.1.5 Proof of Remark 4.3.2

Proof of Remark 4.3.2. Let fX(x; ∆) denote the density of X with ∆. Denote

˙̀(x; ∆) :=
∂

∂∆
log fX(x; ∆),
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then we can write IX(0) = E[{ ˙̀(Y ; 0)}2], where Y is distributed as X with ∆ = 0. Direct

computation yields
˙̀(x; 0) =

g(x)− f0(x)

f0(x)
,

and thus

IX(0) = E[{ ˙̀(Y ; 0)}2] = E[{g(Y )/f0(Y )− 1}2]

= E[{s(Y )}2] = χ2(G,F0) :=

∫
(dG/dF0 − 1)2dF0.

Since s(x) = g(x)/f0(x)− 1 is continuous and both g and f0 have compact support, s(x) is

bounded. Hence IX(0) <∞.

C.1.6 Proof of Example 4.3.2

Proof of Example 4.3.2. To verify Assumption 4.3.2 for the Farlie alternatives, we first prove

that G is a bonafide joint distribution function. The corresponding density g is given by

g(x1, x2) = f1(x1)f2(x2)[1 + {1− 2F1(x1)}{1− 2F2(x2)}],

which is a bonafide joint density function (Kössler and Rödel, 2007, Sec. 1.1.5). Then we

have

s(x) = g(x)/f0(x)− 1 = {1− 2F1(x1)}{1− 2F2(x2)}

and find that

E[s(Y )|Y1] = {1− 2F1(Y1)} × E{1− 2F2(Y2)} = 0

and E[s(Y )|Y2] = E{1− 2F1(Y1)} × {1− 2F2(Y2)} = 0.

The proof is completed.
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C.1.7 Proof of Example 4.3.3

Proof of Example 4.3.3. We first verify that g is a bonafide joint density function. First

since both h1 and h2 are bounded by 1,

|g(x)/f0(x)− 1| = |h1(x1)h2(x1)| ≤ 1,

and thus g(x) ≥ 0. Then we write

g(x1, x2) = f1(x1)f2(x2) + f1(x1)h1(x1)f2(x2)h2(x2)

and ∫ ∞
−∞

∫ ∞
−∞

g(x1, x2)dx1dx2 =

∫ ∞
−∞

f1(x1)dx1 ×
∫ ∞
−∞

f2(x2)dx2

+

∫ ∞
−∞

f1(x1)h1(x1)dx1 ×
∫ ∞
−∞

f2(x2)h2(x2)dx2 = 1,

where ∫ ∞
−∞

f1(x1)h1(x1)dx1 <∞ and
∫ ∞
−∞

f2(x2)h2(x2)dx2 = 0

since h1(x1), h2(x2) are bounded by 1 and f2(x2)h2(x2) = −f2(−x2)h2(−x2). We also have

E[s(Y )|Y1] = h1(Y1)× E[h2(Y2)] = h1(Y1)

∫ ∞
−∞

f2(x2)h2(x2)dx2 = 0,

and E[s(Y )|Y2] = E[h1(Y1)]× h2(Y2) with E[h1(Y1)] =

∫ ∞
−∞

f1(x1)h1(x1)dx1 6= 0.

The proof is completed.

C.1.8 Proof of Theorem 4.3.1(i)

Proof of Theorem 4.3.1(i). (A) This proof uses all of Assumption 4.3.1. Let Yi = (Y1i, Y2i),

i = 1, . . . , n be independent copies of Y . Recall that fX(x; ∆) is the density of X with ∆.
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Denote

L(x; ∆) :=
fX(x; ∆)

fX(x; 0)
, ˙̀(x; ∆) :=

∂

∂∆
log fX(x; ∆),

and define Λn :=
∑n

i=1 logL(Yi; ∆n) and Tn := ∆n

∑n
i=1

˙̀(Yi; 0). These definitions make

sense by Assumption 4.3.1(i),(ii).

To employ a corollary to Le Cam’s third lemma, we wish to derive the joint limiting null

distribution of (−n1/2ξn/3,Λn). Under the null hypothesis, it holds that Y2[1], . . . , Y2[n] are

still independent and identically distributed, where [i] is such that Y1[1] < · · · < Y1[n]. In

view of Angus (1995, Equation (9)), we have that under the null,

−1

3
n1/2ξn = n−1/2

n−1∑
i=1

Ξ[i] + oP(1), (C.1.4)

where

Ξ[i] :=
∣∣∣FY2(Y2[i+1]

)
− FY2

(
Y2[i]

)∣∣∣+ FY2

(
Y2[i+1]

){
1− FY2

(
Y2[i+1]

)}
+ FY2

(
Y2[i]

){
1− FY2

(
Y2[i]

)}
− 2

3
, (C.1.5)

and FY2 is the cumulative distribution function for Y2. One readily verifies |Ξ[i]| ≤ 1.

Using (C.1.4), the limiting null distribution of (−n1/2ξn/3,Λn) will be the same as that

of (n−1/2
∑n−1

i=1 Ξ[i],Λn). To find the limiting null distribution of (n−1/2
∑n−1

i=1 Ξ[i],Λn), using

the idea from Hájek and Šidák (1967, p. 210–214), we first find the limiting null distribution

of (
n−1/2

n−1∑
i=1

Ξ[i], Tn

)
=
(
n−1/2

n−1∑
i=1

Ξ[i], n
−1/2∆0

n∑
i=1

˙̀(Yi; 0)
)

=
(
n−1/2

n−1∑
i=1

Ξ[i], n
−1/2∆0

n∑
i=1

˙̀(Y[i]; 0)
)
,

where Y[i] = (Y1[i], Y2[i]). To employ the Cramér–Wold device, we aim to show that under
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the null, for any real numbers a and b,

an−1/2

n−1∑
i=1

Ξ[i] + bn−1/2∆0

n∑
i=1

˙̀(Y[i]; 0) N
(

0, 2a2/45 + b2∆2
0IX(0)

)
. (C.1.6)

The idea of the proof is to first show a conditional central limit result

an−1/2

n−1∑
i=1

Ξ[i] + bn−1/2∆0

n∑
i=1

˙̀(Y[i]; 0)
∣∣∣Y11, . . . , Y1n  N

(
0, 2a2/45 + b2∆2

0IX(0)
)

for almost every sequence Y11, . . . , Y1n, . . . , (C.1.7)

and secondly deduce the desired unconditional central limit result.

To prove (C.1.7), we follow the idea put forward in the proof of Lemma 2.9.5 in van der

Vaart and Wellner (1996). According to the central limit theorem for 1-dependent random

variables (see, e.g., the Corollary in Orey, 1958, p. 546), the statement (C.1.7) is true if the

following conditions hold: for almost every sequence Y11, . . . , Y1n, . . . ,

E2

(
W[i]

)
= 0, (C.1.8)

1

n
E2

{( n∑
i=1

W[i]

)2}
→ 2a2/45 + b2∆2

0IX(0), (C.1.9)

n∑
i=1

E2

(
W 2

[i]

)/
E2

{( n∑
i=1

W[i]

)2}
is bounded, (C.1.10)

and
1

n

n∑
i=1

E2

{
W 2

[i] × 1
(
n−1/2

∣∣∣W[i]

∣∣∣ > ε
)}
→ 0 for every ε > 0, (C.1.11)

where E2 denotes the expectation conditionally on Y11, . . . , Y1n, and

W[i] := aΞ[i] + b∆0
˙̀
(
Y[i]; 0

)
for i = 1, . . . , n− 1,

and W[n] := b∆0
˙̀
(
Y[n]; 0

)
. (C.1.12)

We verify conditions (C.1.8)–(C.1.11) as follows, starting from (C.1.8). Under the null
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hypothesis, conditionally on Y11, . . . , Y1n, we have that Y2[1], . . . , Y2[n] are still independent

and identically distributed as Y2, which implies that E2(Ξ[i]) = 0. We also deduce, by (C.1.3)

and Assumption 4.3.1(ii), that

E
{

˙̀
(
Y ; 0

)∣∣∣Y1

}
= 0, (C.1.13)

and thus E2{ ˙̀(Y[i]; 0)} = 0. Then (C.1.8) follows by noticing that

E2(Ξ[i]) = 0 and E2{ ˙̀(Y[i]; 0)} = 0. (C.1.14)

For (C.1.9) and (C.1.10), we first claim that

Cov2

{
n−1/2

n−1∑
i=1

Ξ[i], n
−1/2∆0

n∑
i=1

˙̀(Y[i]; 0)
)}

= 0, (C.1.15)

where Cov2 denotes the covariance conditionally on Y11, . . . , Y1n. Recall that, under the null

hypothesis, Y2[1], . . . , Y2[n] are still independent and identically distributed as Y2, conditionally

on Y11, . . . , Y1n. We obtain

Cov2

{∣∣∣FY2(Y2[i+1]

)
− FY2

(
Y2[i]

)∣∣∣, ˙̀
(
Y[i+1]; 0

)}
= Cov2

[1

2

{
FY2

(
Y2[i+1]

)}2

+
1

2

{
1− FY2

(
Y2[i+1]

)}2

, ˙̀
(
Y[i+1]; 0

)]
(C.1.16)

by taking expectation with respect to Y2[i],

Cov2

{∣∣∣FY2(Y2[i+1]

)
− FY2

(
Y2[i]

)∣∣∣, ˙̀
(
Y[i]; 0

)}
= Cov2

[1

2

{
FY2

(
Y2[i]

)}2

+
1

2

{
1− FY2

(
Y2[i]

)}2

, ˙̀
(
Y[i]; 0

)]
(C.1.17)

by taking expectation with respect to Y2[i+1], and

Cov2

{∣∣∣FY2(Y2[i+1]

)
− FY2

(
Y2[i]

)∣∣∣, ˙̀
(
Y[j]; 0

)}
= 0 for all j 6= i, i+ 1, (C.1.18)

since Y2[i], Y2[i+1] are independent of Y2[j] with j 6= i, i + 1, conditionally on Y11, . . . , Y1n.
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Taking into account (C.1.16)–(C.1.18), it follows that

Cov2

{
n−1/2

n−1∑
i=1

Ξ[i], n
−1/2∆0

n∑
i=1

˙̀
(
Y[i]

)}
= n−1∆0

( n∑
i=2

Cov2

[1

2

{
FY2

(
Y2[i]

)}2

+
1

2

{
1− FY2

(
Y2[i]

)}2

, ˙̀
(
Y[i]; 0

)]
+

n−1∑
i=1

Cov2

[1

2

{
FY2

(
Y2[i]

)}2

+
1

2

{
1− FY2

(
Y2[i]

)}2

, ˙̀
(
Y[i]; 0

)]
+

n∑
i=2

Cov2

[
FY2

(
Y2[i]

){
1− FY2

(
Y2[i]

)}
, ˙̀
(
Y[i]; 0

)]
+

n−1∑
i=1

Cov2

[
FY2

(
Y2[i]

){
1− FY2

(
Y2[i]

)}
, ˙̀
(
Y[i]; 0

)])
= n−1

[ n∑
i=2

Cov2

{1

2
, ˙̀
(
Y[i]; 0

)}
+

n−1∑
i=1

Cov2

{1

2
, ˙̀
(
Y[i]; 0

)}]
= n−1

[
− Cov2

{1

2
, ˙̀
(
Y[1]; 0

)}
− Cov2

{1

2
, ˙̀
(
Y[n]; 0

)}]
= 0, (C.1.19)

where we notice that

E
{
n−1
∣∣∣ ˙̀(Y[j]; 0

)∣∣∣} ≤ E
{
n−1

n∑
i=1

∣∣∣ ˙̀(Yi; 0
)∣∣∣} = E

∣∣∣ ˙̀(Y ; 0
)∣∣∣ <∞, (C.1.20)

for any given j. Then using (C.1.14)–(C.1.15) we can prove (C.1.9) as follows:

1

n
E2

{( n∑
i=1

W[i]

)2}
=

1

n
E2

[{
a
n−1∑
i=1

Ξ[i] + b∆0

n∑
i=1

˙̀
(
Y[i]; 0

)}2]
=

1

n
E2

[(
a

n−1∑
i=1

Ξ[i]

)2

+
{
b∆0

n∑
i=1

˙̀
(
Y[i]; 0

)}2]
=

1

n
E2

[(
a

n−1∑
i=1

Ξ[i]

)2

+
{
b∆0

n∑
i=1

˙̀
(
Yi; 0

)}2]
=

2a2(n− 1)

45n
+

1

n

n∑
i=1

E2

[{
b∆0

˙̀
(
Yi; 0

)}2]
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→ 2a2/45 + b2∆2
0IX(0), (C.1.21)

where the last step holds for almost all sequences Y11, . . . , Y1n, . . . by the law of large numbers.

To verify (C.1.10), recalling (C.1.5) and using (C.1.14),(C.1.17), we obtain

E2

{
Ξ[i] ×∆0

˙̀
(
Y[i]; 0

)}
= Cov2

{
Ξ[i],∆0

˙̀
(
Y[i]; 0

)}
= 0,

and moreover,

1

n

n∑
i=1

E2

(
W 2

[i]

)
=

1

n

( n−1∑
i=1

E2

[{
aΞ[i] + b∆0

˙̀
(
Y[i]; 0

)}2]
+ E2

[{
b∆0

˙̀
(
Y[n]; 0

)}2])

=
1

n

( n−1∑
i=1

E2

{(
aΞ[i]

)2}
+

n∑
i=1

E2

[{
b∆0

˙̀
(
Y[i]; 0

)}2])
=

1

n

(
2a2(n− 1)

45
+

n∑
i=1

E2

[{
b∆0

˙̀
(
Yi; 0

)}2])
.

Hence we have, recalling (C.1.21),

n∑
i=1

E2

(
W 2

[i]

)/
E2

{( n∑
i=1

W[i]

)2}
= 1. (C.1.22)

For proving (C.1.11), we recall that as given in (C.1.3)

˙̀
(
Y[i]; 0

)
= −Y1[i]

{
ρ2

(
Y2[i]

)}
− Y2[i]

{
ρ1

(
Y1[i]

)}
, (C.1.23)

where ρk(z) := f ′k(z)/fk(z). The existence of finite second moments assumed in Assump-

tion 4.3.1(iii), E{(Y1)2} <∞ and E[{ρ1(Y1)}2] <∞, implies that

max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣→ 0 and max
1≤i≤n

n−1/2
∣∣∣ρ1

(
Y1i

)∣∣∣→ 0 (C.1.24)

for almost all sequences Y11, . . . , Y1n, . . . (Barndorff-Nielsen, 1963, Theorem 5.2). Since
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|Ξ[i]| ≤ 1, we have

1
(
n−1/2

∣∣W[i]

∣∣ > ε
)
≤ 1

(
|a|n−1/2 > ε/3

)
+ 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y2[i]

)∣∣∣ > ε/3
}

+ 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣ρ1

(
Y1i

)∣∣∣)× ∣∣∣Y2[i]

∣∣∣ > ε/3
}
.

Then for every ε > 0,

1

n

n∑
i=1

E2

{
W 2

[i] × 1
(
n−1/2

∣∣∣W[i]

∣∣∣ > ε
)}

≤ 1

n

n∑
i=1

E2

(
3
[
a2 +

{
Y1[i] × ρ2

(
Y2[i]

)}2

+
{
Y2[i] × ρ1

(
Y1[i]

)}2]
×
[
1
(
|a|n−1/2 > ε/3

)
+ 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y2[i]

)∣∣∣ > ε/3
}

+ 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣ρ1

(
Y1i

)∣∣∣)× ∣∣∣Y2[i]

∣∣∣ > ε/3
}])

.

(C.1.25)

Here in (C.1.25) we have by (C.1.24) and dominated convergence theorem that

1

n

n∑
i=1

E2

[
1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y2[i]

)∣∣∣ > ε/3
}]

= E2

[
1
{∣∣∣b∣∣∣× ( max

1≤i≤n
n−1/2

∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y21

)∣∣∣ > ε/3
}]
→ 0,

where

1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y21

)∣∣∣ > ε/3
}]

p−→ 0,

for almost all sequences Y11, . . . , Y1n, . . . . We also have

1

n

n∑
i=1

E2

[{
Y1[i]ρ2

(
Y2[i]

)}2

× 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y2[i]

)∣∣∣ > ε/3
}]

=
1

n

n∑
i=1

(
Y1[i]

)2

E2

[{
ρ2

(
Y2[i]

)}2

× 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y2[i]

)∣∣∣ > ε/3
}]
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=

(
1

n

n∑
i=1

(
Y1[i]

)2
)(

E2

[{
ρ2

(
Y21

)}2

× 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y21

)∣∣∣ > ε/3
}])

=

(
1

n

n∑
i=1

(
Y1i

)2
)(

E2

[{
ρ2

(
Y21

)}2

× 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y21

)∣∣∣ > ε/3
}])

→ 0,

where for almost all sequences Y11, . . . , Y1n, . . . ,

1

n

n∑
i=1

(
Y1i

)2

→ E
{(
Y1

)2}
by the law of large numbers, and

E2

[{
ρ2

(
Y21

)}2

× 1
{
|b| ×

(
max
1≤i≤n

n−1/2
∣∣∣Y1i

∣∣∣)× ∣∣∣ρ2

(
Y21

)∣∣∣ > ε/3
}]
→ 0

by (C.1.24) and the dominated convergence theorem. We can deduce similar convergences

for all the other summands in (C.1.25). Hence for almost all sequences Y11, . . . , Y1n, . . . , all

conditions (C.1.8)–(C.1.11) are satisfied. This completes the proof of (C.1.7). Moreover, the

desired result (C.1.6) follows.

Finally, the Cramér–Wold device yields that under the null,

(
n−1/2

n−1∑
i=1

Ξ[i], Tn

)
 N2

((
0

0

)
,

(
2/45 0

0 ∆2
0IX(0)

))
. (C.1.26)

Furthermore, using ideas from Hájek and Šidák (1967, p. 210–214) (see also Gieser, 1993,

Appx. B), we have under the null,

Λn − Tn + ∆2
0IX(0)/2

p−→ 0,
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and thus under the null,

(
n−1/2

n−1∑
i=1

Ξ[i],Λn

)
 N2

((
0

−∆2
0IX(0)/2

)
,

(
2/45 0

0 ∆2
0IX(0)

))
, (C.1.27)

and (−n1/2ξn/3,Λn) has the same limiting null distribution by (C.1.4). Finally, we employ a

corollary to Le Cam’s third lemma (van der Vaart, 1998, Example 6.7) to obtain that, under

the considered local alternative H1,n(∆0) with any fixed ∆0 > 0, −n1/2ξn/3  N(0, 2/45),

and thus

n1/2ξn  N(0, 2/5). (C.1.28)

This completes the proof for family (A).

(B) This proof proceeds with only Assumption 4.3.2(i),(ii),(iv). Let Yi = (Y1i, Y2i),

i = 1, . . . , n be independent copies of Y (distributed as X with ∆ = 0). Denote

L(x; ∆) :=
fX(x; ∆)

fX(x; 0)
, ˙̀(x; ∆) :=

∂

∂∆
log fX(x; ∆),

and define Λn :=
∑n

i=1 logL(Yi; ∆n) and Tn := ∆n

∑n
i=1

˙̀(Yi; 0). Direct computation yields

L(x; ∆) =
(1−∆)f0(x) + ∆g(x)

f0(x)
, ˙̀(x; 0) =

g(x)− f0(x)

f0(x)
,

and thus

IX(0) = E[{ ˙̀(Y ; 0)}2] = E[{g(Y )/f0(Y )− 1}2]

= E[{s(Y )}2] =

∫
(dG/dF0 − 1)2dF0.

Similar to the proof for family (A), we proceed to determine the limiting null distribution

of (−n1/2ξn/3,Λn). To this end, in view of the proof of Theorem 2 in Dhar et al. (2016), we

first find the limiting null distribution of (n−1/2
∑n−1

i=1 Ξ[i], Tn). The idea of deriving it is still

to first show (C.1.7), then (C.1.6), and thus (C.1.26).
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Next we verify conditions (C.1.8)–(C.1.11) for family (B). Notice that when we verify

conditions (C.1.8)–(C.1.10) for family (A) (from (C.1.14) to (C.1.22)), we only use that

(1) under the null hypothesis, Y2[1], . . . , Y2[n] are still independent and identically dis-

tributed as Y2, conditionally on Y11, . . . , Y1n,

(2) E{ ˙̀(Y ; 0)|Y1} = 0, and

(3) 0 < IX(0) <∞.

The first property always holds under the null hypothesis. The latter two are assumed

or implied in Assumption 4.3.2(ii) and Assumption 4.3.2(i),(iv), respectively. Hence we

can verify conditions (C.1.8)–(C.1.10) for family (B) using the same arguments. The only

difference lies in proving (C.1.11). Since s(x) = g(x)/f0(x) − 1 is continuous and has

compact support, it is bounded by some constant, say Cs > 0. We have by definition of W[i]

in (C.1.12), ∣∣W[i]

∣∣ ≤ |a|+ |b|∆0Cs,

and thus

1
(
n−1/2

∣∣∣W[i]

∣∣∣ > ε
)

= 0 for all n >
( |a|+ |b|∆0Cs

ε

)2

.

Then (C.1.11) follows by the dominated convergence theorem.

We have proven (C.1.26) for family (B). Furthermore, in the proof of Theorem 2 in Dhar

et al. (2016), they showed that under the null,

Λn − Tn + ∆2
0IX(0)/2

p−→ 0. (C.1.29)

Thus under the null, we have (C.1.27) as well. The rest of the proof is to employ a corollary

to Le Cam’s third lemma (van der Vaart, 1998, Example 6.7) to obtain (C.1.28).
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C.1.9 Proof of Theorem 4.3.1(ii)

Proof of Theorem 4.3.1(ii). (A) This proof uses all of Assumption 4.3.1. Let Yi = (Y1i, Y2i)

and Xi = (X1i, X2i), i = 1, . . . , n be independent copies of Y and X, respectively. Here

X depends on n with ∆ = ∆n = n−1/2∆0. Let F (0) and F (a) be the (joint) distribution

functions of (Y1, . . . ,Yn) and (X1, . . . ,Xn), respectively. Denote

L(x; ∆) :=
fX(x; ∆)

fX(x; 0)
, ˙̀(x; ∆) :=

∂

∂∆
log fX(x; ∆),

and define Λn :=
∑n

i=1 logL(Yi; ∆n) and Tn := ∆n

∑n
i=1

˙̀(Yi; 0). These definitions make

sense by Assumption 4.3.1(i),(ii).

In this proof we will consider the Hoeffding decomposition of µn under the null:

µn =
mµ∑
`=1

(
n

`

)−1 ∑
1≤i1<···<i`≤n

(
mµ

`

)
h̃µ`

{(
Y1i1 , Y2i1

)
, . . . ,

(
Y1i` , Y2i`

)}
︸ ︷︷ ︸

Hµ
n,`

, (C.1.30)

where

h̃µ` (y1, . . . , y`) := hµ` (y1, . . . , y`)− Ehµ −
`−1∑
k=1

∑
1≤i1<···<ik≤`

h̃µk(yi1 , . . . , yik),

hµ` (y1 . . . , y`) := Ehµ(y1 . . . , y`,Y`+1, . . . ,Ymµ), Ehµ := Ehµ(Y1, . . . ,Ymµ),

and Y1, . . . ,Ymµ are mµ independent copies of Y . Here hµ is the “symmetrized” kernel and

mµ is the order of the kernel function hµ for µ ∈ {D,R, τ ∗} related to (4.2.5), (4.2.6), or

(4.2.7):

hD(y1, . . . , y5) :=
1

5!

∑
1≤i1 6=···6=i5≤5

1

4[{
1
(
y1i1 ≤ y1i5

)
− 1

(
y1i2 ≤ y1i5

)}{
1
(
y1i3 ≤ y1i5

)
− 1

(
y1i4 ≤ y1i5

)}]
[{
1
(
y2i1 ≤ y2i5

)
− 1

(
y2i2 ≤ y2i5

)}{
1
(
y2i3 ≤ y2i5

)
− 1

(
y2i4 ≤ y2i5

)}]
,
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hR(y1, . . . , y6) :=
1

6!

∑
1≤i1 6=···6=i6≤6

1

4[{
1
(
y1i1 ≤ y1i5

)
− 1

(
y1i2 ≤ y1i5

)}{
1
(
y1i3 ≤ y1i5

)
− 1

(
y1i4 ≤ y1i5

)}]
[{
1
(
y2i1 ≤ y2i6

)
− 1

(
y2i2 ≤ y2i6

)}{
1
(
y2i3 ≤ y2i6

)
− 1

(
y2i4 ≤ y2i6

)}]
,

hτ
∗
(y1, . . . , y4) :=

1

4!

∑
1≤i1 6=···6=i4≤4

{
1
(
y1i1 , y1i3 < y1i2 , y1i4

)
+ 1
(
y1i2 , y1i4 < y1i1 , y1i3

)
− 1

(
y1i1 , y1i4 < y1i2 , y1i3

)
− 1

(
y1i2 , y1i3 < y1i1 , y1i4

)}
{
1
(
y2i1 , y2i3 < y2i2 , y2i4

)
+ 1
(
y2i2 , y2i4 < y2i1 , y2i3

)
− 1

(
y2i1 , y2i4 < y2i2 , y2i3

)
− 1

(
y2i2 , y2i3 < y2i1 , y2i4

)}
,

and mD = 5, mR = 6, mτ∗ = 4. We will omit the superscript µ in mµ, hµ, hµ` , h̃
µ
` , and H

µ
n,`

hereafter if no confusion is possible.

The proof is split into three steps. First, we prove that F (a) is contiguous to F (0) in order

to employ Le Cam’s third lemma (van der Vaart, 1998, Theorem 6.6). Next, we find the

limiting null distribution of (nµn,Λn). Lastly, we employ Le Cam’s third lemma to deduce

the alternative distribution of (nµn,Λn).

Step I. In view of Gieser (1993, Sec. 3.2.1), Assumption 4.3.1 is sufficient for the conti-

guity: we have that F (a) is contiguous to F (0).

Step II. Next we need to derive the limiting distribution of (nµn,Λn) under null hypoth-

esis. To this end, we first derive the limiting null distribution of (nHn,2,Λn), where Hn,2 is

defined in (C.1.30). We write by the Fredholm theory of integral equations (Dunford and

Schwartz, 1963, pages 1009, 1083, 1087) that

Hn,2 =
1

n(n− 1)

∑
i 6=j

∞∑
v=1

λvψv

(
Y1i, Y2i

)
ψv

(
Y1j, Y2j

)
,

where {λv, v = 1, 2, . . . } is an arrangement of {λv1,v2 , v1, v2 = 1, 2, . . . }, and ψv is the nor-

malized eigenfunction associated with λv. For each positive integer K, define the “truncated”
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U-statistic as

Hn,2,K :=
1

n(n− 1)

∑
i 6=j

K∑
v=1

λvψv

(
Y1i, Y2i

)
ψv

(
Y1j, Y2j

)
.

Notice that nHn,2 and nHn,2,K can be written as

nHn,2 =
n

n− 1

( ∞∑
v=1

λv

{
n−1/2

n∑
i=1

ψv

(
Y1i, Y2i

)}2

−
∞∑
v=1

λv

[
n−1

n∑
i=1

{
ψv

(
Y1i, Y2i

)}2])
,

nHn,2,K =
n

n− 1

( K∑
v=1

λv

{
n−1/2

n∑
i=1

ψv

(
Y1i, Y2i

)}2

−
K∑
v=1

λv

[
n−1

n∑
i=1

{
ψv

(
Y1i, Y2i

)}2])
.

For a simpler presentation, let Sn,v denote n−1/2
∑n

i=1 ψv(Y1i, Y2i) hereafter.

To derive the limiting null distribution of (nHn,2,Λn), we first derive the limiting null

distribution of (nHn,2,K , Tn) for each integer K. Observe that

E(Sn,v) = 0, Var(Sn,v) = 1, Cov(Sn,v, Tn)→ dv∆0,

E(Tn) = 0, Var(Tn) = IX(0),

where dv := Cov{ψv(Y ), ˙̀(Y ; 0)} and 0 < IX(0) <∞ by Assumption 4.3.1. There exists at

least one v ≥ 1 such that dv 6= 0. Indeed, applying Theorem 4.4 and Lemma 4.2 in Nandy

et al. (2016) yields{
ψv

(
x
)
, v = 1, 2, . . .

}
=
{
ψ1v1

(
x1

)
ψ2v2

(
x2

)
, v1, v2 = 1, 2, . . .

}
,

where

ψ1v1

(
x1

)
ψ2v2

(
x2

)
:= 2 cos

{
πv1FY1

(
x1

)}
cos
{
πv2FY2

(
x2

)}
is associated with eigenvalue λµv1,v2 defined in Proposition 4.2.4. Since

EYk = E
{
ρYk

(
Yk

)}
= 0,

{ψv(x), v = 1, 2, . . . } forms a complete orthogonal basis for the family of functions of the
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form (C.1.3): dv = 0 for all v thus entails

IX(0) = E[{L′(Y ; 0)}2] = E
[{ ∞∑

v=1

dvψv

(
Y1, Y2

)}2]
=
∞∑
v=1

d2
v = 0,

which contradicts Assumption 4.3.1(iii). Therefore, dv∗ 6= 0 for some v∗. Applying the

multivariate central limit theorem (Bhattacharya and Ranga Rao, 1986, Equation (18.24)),

we deduce that under the null,

(Sn,1, . . . , Sn,K , Tn) (ξ1, . . . , ξK , VK),

where

(ξ1, . . . , ξK , VK) ∼ NK+1

((
0K

0

)
,

(
IK ∆0v

∆0v
> ∆2

0I

))
.

Here 0K denotes a zero vector of dimension K, IK denotes an identity matrix of dimension

K, I is short for IX(0), and v = (d1, . . . , dK). Thus VK can be expressed as

(
∆2

0I
)1/2{ K∑

v=1

cvξv + c0,Kξ0

}
,

where cv := I−1/2dv, c0,K := (1−
∑K

v=1 c
2
v)

1/2, and ξ0 is standard Gaussian and independent

of ξ1, . . . , ξK . Then by the continuous mapping theorem (van der Vaart, 1998, Theorem 2.3)

and Slutsky’s theorem (van der Vaart, 1998, Theorem 2.8), we have under the null,

(nHn,2,K , Tn) 

( K∑
v=1

λv

(
ξ2
v − 1

)
,
(

∆2
0I
)1/2( K∑

v=1

cvξv + c0,Kξ0

))
. (C.1.31)

Moreover, we claim that under the null,

(nHn,2, Tn) 

( ∞∑
v=1

λv

(
ξ2
v − 1

)
,
(

∆2
0I
)1/2( ∞∑

v=1

cvξv + c0,∞ξ0

))
, (C.1.32)
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with c0,∞ := (1−
∑∞

v=1 c
2
v)

1/2 via the following argument. Denote

MK :=
K∑
v=1

λv

(
ξ2
v − 1

)
, VK :=

(
∆2

0I
)1/2( K∑

v=1

cvξv + c0,Kξ0

)
,

M :=
∞∑
v=1

λv

(
ξ2
v − 1

)
, and V :=

(
∆2

0I
)1/2( ∞∑

v=1

cvξv + c0,∞ξ0

)
.

To prove (C.1.32), it suffices to prove that for any real numbers a and b,∣∣∣E{ exp
(
ianHn,2 + ibTn

)}
− E

{
exp

(
iaM + ibV

)}∣∣∣→ 0 as n→∞, (C.1.33)

where i denotes the imaginary unit. We have∣∣∣E{ exp
(
ianHn,2 + ibTn

)}
− E

{
exp

(
iaM + ibV

)}∣∣∣
≤
∣∣∣E{ exp

(
ianHn,2 + ibTn

)}
− E

{
exp

(
ianHn,2,K + ibTn

)}∣∣∣
+
∣∣∣E{ exp

(
ianHn,2,K + ibTn

)}
− E

{
exp

(
iaMK + ibVK

)}∣∣∣
+
∣∣∣E{ exp

(
iaMK + ibVK

)}
− E

{
exp

(
iaM + ibV

)}∣∣∣ =: I + II + III, say,

where in view of page 82 of Lee (1990) and Equation (4.3.10) in Koroljuk and Borovskich

(1994),

I ≤ E
∣∣∣ exp

{
ian
(
Hn,2 −Hn,2,K

)}
− 1
∣∣∣ ≤ {E

∣∣∣an(Hn,2 −Hn,2,K

)∣∣∣2}1/2

=
( 2na2

n− 1

∞∑
v=K+1

λ2
v

)1/2

and

III ≤ E
∣∣∣ exp

{
ia
(
MK −M

)
+ ib

(
VK − V

)}
− 1
∣∣∣ ≤ {E

∣∣∣a(MK −M
)

+ b
(
VK − V

)∣∣∣2}1/2

≤
{

2
(

2a2

∞∑
v=K+1

λ2
v + 2b2∆2

0I
∞∑

v=K+1

c2
v

)}1/2

.
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Since by Remark 3.1 in Nandy et al. (2016),

∞∑
v=1

λ2
v =

1/8100 when µ = D,R,

1/225 when µ = τ ∗,

and
∞∑
v=1

c2
v = I−1

∞∑
v=1

d2
v = 1,

we conclude that, for any ε > 0, there exists K0 such that I < ε/3 and III < ε/3 for all

n and all K ≥ K0. For this K0, we have II < ε/3 for all sufficiently large n by (C.1.31).

These together prove (C.1.33). We also have, using the idea from Hájek and Šidák (1967,

p. 210–214) (see also Gieser, 1993, Appendix B), that under the null

Λn − Tn + ∆2
0I/2

p−→ 0. (C.1.34)

Combining (C.1.32) and (C.1.34) yields that under the null,

(nHn,2,Λn) 

( ∞∑
v=1

λv

(
ξ2
v − 1

)
,
(

∆2
0I
)1/2( ∞∑

v=1

cvξv + c0,∞ξ0

)
− ∆2

0I
2

)
. (C.1.35)

Using the fact Hn,1 = 0 and Equation (1.6.7) in Lee (1990, p. 30) yields that (nµn,Λn) has

the same limiting distribution as (C.1.35) under the null.

Step III. Finally employing Le Cam’s third lemma (van der Vaart, 1998, Theorem 6.6)

we obtain that under the local alternative

P{nµn ≤ q1−α | H1,n(∆0)}

→ E
[
1
{ ∞∑
v=1

λv

(
ξ2
v − 1

)
≤ q1−α

}
× exp

{(
∆2

0I
)1/2( ∞∑

v=1

cvξv + c0,∞ξ0

)
− ∆2

0I
2

}]
≤ E

[
1
{∣∣∣ξv∗∣∣∣ ≤ (q1−α +

∑∞
v=1 λv

λv∗

)1/2}
× exp

{(
∆2

0I
)1/2( ∞∑

v=1

cvξv + c0,∞ξ0

)
− ∆2

0I
2

}]
= E

[
1
{∣∣∣ξv∗∣∣∣ ≤ (q1−α +

∑∞
v=1 λv

λv∗

)1/2}
× exp

{(
∆2

0I
)1/2(

cv∗ξv∗ + (1− c2
v∗)

1/2ξ0

)
− ∆2

0I
2

}]
= Φ

{(q1−α +
∑∞

v=1 λv
λv∗

)1/2

− cv∗
(

∆2
0I
)1/2}

− Φ
{
−
(q1−α +

∑∞
v=1 λv

λv∗

)1/2

− cv∗
(

∆2
0I
)1/2}
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≤ 2
(q1−α +

∑∞
v=1 λv

λv∗

)1/2

ϕ
{∣∣∣cv∗∣∣∣(∆2

0I
)1/2

−
(q1−α +

∑∞
v=1 λv

λv∗

)1/2}
, (C.1.36)

for some v∗ such that cv∗ = I−1/2dv∗ 6= 0 and

∆0 ≥
∣∣∣cv∗∣∣∣−1

I−1/2
(q1−α +

∑∞
v=1 λv

λv∗

)1/2

, (C.1.37)

where Φ and ϕ are the distribution function and density function of the standard normal dis-

tribution, respectively. Note that the right-hand side of (C.1.36) is monotonically decreasing

as ∆0 increases given (C.1.37). There exists a positive constant Cβ such that (C.1.36) is

smaller than β/2 as long as ∆0 ≥ Cβ, regardless of whether cv∗ is positive or negative. This

concludes the proof.

(B) This proof uses Assumption 4.3.2(i),(iii),(iv). Let Yi = (Y1i, Y2i), i = 1, . . . , n be

independent copies of Y (distributed as X with ∆ = 0). Denote

L(x; ∆) :=
fX(x; ∆)

fX(x; 0)
, ˙̀(x; ∆) :=

∂

∂∆
log fX(x; ∆),

and define Λn :=
∑n

i=1 logL(Yi; ∆n) and Tn := ∆n

∑n
i=1

˙̀(Yi; 0). Direct computation yields

L(x; ∆) =
(1−∆)f0(x) + ∆g(x)

f0(x)
, ˙̀(x; 0) =

g(x)− f0(x)

f0(x)
,

and thus

IX(0) = E[{ ˙̀(Y ; 0)}2] = E[{g(Y )/f0(Y )− 1}2]

= E[{s(Y )}2] =

∫
(dG/dF0 − 1)2dF0.

This is similar to the proof for family (A). The only difference lies in proving the existence

of at least one v ≥ 1 such that dv 6= 0, where dv := Cov[ψv(Y ), ˙̀(Y ; 0)]. Now ˙̀(x; 0) = s(x)

is not of the form (C.1.3), and {ψv(x), v = 1, 2, . . . } does not necessarily form a complete



206

orthogonal basis for the family of functions of s(x). However, recall that{
ψv

(
x
)
, v = 1, 2, . . .

}
=
{
ψ1v1

(
x1

)
ψ2v2

(
x2

)
, v1, v2 = 1, 2, . . .

}
,

where

ψ1v1

(
x1

)
ψ2v2

(
x2

)
:= 2 cos

{
πv1FY1

(
x1

)}
cos
{
πv2FY2

(
x2

)}
.

Since {
ψ1v1

(
x1

)
ψ2v2

(
x2

)
, v1, v2 = 0, 1, 2, . . .

}
forms a complete orthogonal basis of the set of square integrable functions, dv = 0 for all

v ≥ 1 thus entails s(x) = h1(x1) + h2(x2) for some functions h1, h2, where hk(xk) depends

only on xk for k = 1, 2. This contradicts Assumption 4.3.2(iii).

C.1.10 Proof of Proposition 4.3.1

Proof of Proposition 4.3.1. (A) This proof uses all of Assumption 4.3.1. Let Yi = (Y1i, Y2i)

and Xi = (X1i, X2i), i = 1, . . . , n be independent copies of Y and X with ∆ = ∆n =

n−1/2∆0, respectively. Let F (0) and F (a) be the (joint) distribution functions of (Y1, . . . ,Yn)

and (X1, . . . ,Xn), respectively, and let F (0)
i and F (a)

i be the distribution functions of Yi and

Xi, respectively.

The total variation distance between two distribution functions G and F on the same

real probability space is defined as

TV(G,F ) := sup
A

∣∣∣PG(A)− PF (A)
∣∣∣,

where A is taken over the Borel field and PG,PF are respective probability measures induced

by G and F . Furthermore, if G is absolutely continuous with respect to F , the Hellinger
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distance between G and F is defined as

HL(G,F ) :=
[ ∫

2
{

1− (dG/dF )1/2
}

dF
]1/2

.

By Assumption 4.3.1(i), HL(F (a), F (0)) is well-defined. It suffices to prove that for any small

0 < β < 1−α, there exists ∆0 = cβ such that, for all sufficiently large n, TV(F (a), F (0)) < β,

which is implied by HL(F (a), F (0)) < β using the relation (Tsybakov, 2009, Equation (2.20))

TV
(
F (a), F (0)

)
≤ HL

(
F (a), F (0)

)
.

We also know that (Tsybakov, 2009, page 83)

1− 1

2
HL2

(
F (a), F (0)

)
=

n∏
i=1

{
1− 1

2
HL2

(
F

(a)
i , F

(0)
i

)}
.

We then aim to evaluate HL2(F (a), F (0)) in terms of IX(0) and ∆0. By definition,

1

2
HL2

(
F

(a)
i , F

(0)
i

)
= E

[
1−

{
L
(
Yi; ∆n

)}1/2]
.

Given Assumption 4.3.1, we deduce in view of Gieser (1993, Appendix B) that

nE
[
1−

{
L
(
Yi; ∆n

)}1/2]
= E

( n∑
i=1

[
1−

{
L
(
Yi; ∆n

)}1/2])
→ ∆2

0IX(0)

8
.

Therefore,

1− 1

2
HL2

(
F (a), F (0)

)
→ exp

{
− ∆2

0IX(0)

8

}
.

The desired result follows by taking cβ > 0 such that

exp
{
−
c2
βIX(0)

8

}
= 1− β2

8
.

(B) This proof requires Assumption 4.3.2(i),(iv). This is similar to the proof for family
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(A), but here we will use the relation (Tsybakov, 2009, Equation (2.27))

TV
(
F (a), F (0)

)
≤
{
χ2
(
F (a), F (0)

)}1/2

,

where the chi-square distance between two distribution functions G and F on the same real

probability space such that G is absolutely continuous with respect to F is defined as

χ2(G,F ) :=

∫ (
dG/dF − 1

)2

dF.

Here χ2(F (a), F (0)) is well-defined by Assumption 4.3.2(i). We also know that (Tsybakov,

2009, page 86)

1 + χ2
(
F (a), F (0)

)
=

n∏
i=1

{
1 + χ2

(
F

(a)
i , F

(0)
i

)}
.

Next we aim to evaluate χ2(F (a), F (0)) in terms of IX(0) = χ2(G,F0) and ∆0. Here 0 <

IX(0) <∞ by Assumption 4.3.2(i),(iv). We have by definition that

χ2
(
F

(a)
i , F

(0)
i

)
= χ2

(
(1−∆n)F0 + ∆nG,F0

)
= ∆2

nχ
2(G,F0) = n−1∆2

0χ
2(G,F0).

Therefore, it holds that

1 + χ2
(
F (a), F (0)

)
→ exp

{
∆2

0χ
2
(
G,F0

)}
.

The desired result follows by taking cβ > 0 such that

exp
{
c2
βχ

2
(
G,F0

)}
= 1 +

β2

4
.

This completes the proof.
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