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Testing independence is a fundamental statistical problem that has received much attention
in literature. In this dissertation, we consider testing independence under two different
settings. The first is testing mutual independence of many covariates, and the second is
testing independence of two random vectors. For both settings, we propose, for the first
time, distribution-free and consistent tests of independence via marginal or multivariate
ranks. Moreover, we establish the optimal efficiency in the statistical sense of both tests.
In addition, we also investigate the power of a simple consistent rank correlation coefficient
recently proposed by Chatterjee (2021) against local alternatives. Our results show that

Chatterjee’s coefficient is unfortunately statistically inefficient.
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Chapter 1

INTRODUCTION

Rank correlations have found many innovative applications in the last decade. In par-
ticular, suitable rank correlations have been used for consistent tests of independence. In
this dissertation, we consider testing independence via marginal and multivariate ranks un-
der two different settings. We will study testing mutual independence for high-dimensional
observations in Chapter 2, and move on to the problem of testing independence between two

random vectors/variables in Chapters 3 and 4.

Chapter 2 is concerned with testing mutual independence among all entries in a random
vector based on finite observations. Popular tests based on linear and simple rank correlations
are known to be incapable of detecting non-linear, non-monotone relationships, calling for
methods that can account for such dependences. To address this challenge, we propose a
family of tests that are constructed using maxima of pairwise rank correlations that permit
consistent assessment of pairwise independence. Built upon a newly developed Cramér-
type moderate deviation theorem for degenerate U-statistics, our results cover a variety
of rank correlations including Hoeffding’s D, Blum-Kiefer-Rosenblatt’s R, and Bergsma-—
Dassios—Yanagimoto’s 7*. The proposed tests are distribution-free in the class of multivariate
distributions with continuous margins, implementable without the need for permutation, and
are shown to be rate-optimal against sparse alternatives under the Gaussian copula model.
As a by-product of the study, we reveal an identity between the aforementioned three rank
correlation statistics, and hence make a step towards proving a conjecture of Bergsma and

Dassios.



In Chapter 3, we consider testing independence between two random vectors. When it
reduces to the univariate case (both random vectors are in dimension one), using ranks is
especially appealing for continuous data as tests become distribution-free. However, the tra-
ditional concept of ranks relies on ordering data and is, thus, tied to univariate observations.
As a result, it has long remained unclear how one may construct distribution-free yet consis-
tent tests of independence between random vectors. In this chapter, we address this problem
by laying out a general framework for designing dependence measures that give tests of mul-
tivariate independence that are not only consistent and distribution-free but which we also
prove to be statistically efficient. Our framework leverages the recently introduced concept
of center-outward ranks and signs, a multivariate generalization of traditional ranks, and
adopts a common standard form for dependence measures that encompasses many popular
examples. In a unified study, we derive a general asymptotic representation of center-outward
rank-based test statistics under independence, extending to the multivariate setting the clas-
sical Hajek asymptotic representation results. This representation permits direct calculation
of limiting null distributions and facilitates a local power analysis that provides strong sup-
port for the center-outward approach by establishing, for the first time, the nontrivial power
of center-outward rank-based tests over root-n neighborhoods within the class of quadratic

mean differentiable alternatives.

In Chapter 4, we focus on the problem of testing independence between two univariate
random variables. Chatterjee (2021) introduced a simple new rank correlation coefficient
that has attracted much recent attention. The coefficient has the unusual appeal that it not
only estimates a population quantity first proposed by Dette et al. (2013) that is zero if and
only if the underlying pair of random variables is independent, but also is asymptotically
normal under independence. This chapter compares Chatterjee’s new correlation coefficient
to three established rank correlations that also facilitate consistent tests of independence,

namely, Hoeffding’s D, Blum-Kiefer-Rosenblatt’s R, and Bergsma-Dassios-Yanagimoto’s



7*. We contrast their computational efficiency in light of recent advances, and investigate
their power against local rotation and mixture alternatives. Our main results show that
Chatterjee’s coefficient is unfortunately rate sub-optimal compared to D, R, and 7*. The
situation is more subtle for a related earlier estimator of Dette et al. (2013). These results
favor D, R, and 7 over Chatterjee’s new correlation coefficient for the purpose of testing
independence.

The main contents of this thesis are taken from the following articles and manuscripts
with minor modification. Chapter 2 is adapted from “High-dimensional consistent indepen-
dence testing with maxima of rank correlations”, coauthored with Mathias Drton and Fang
Han, published on The Annals of Statistics (Drton et al., 2020). Chapter 3 is drawn from
“On universally consistent and fully distribution-free rank tests of vector independence”,
coauthored with Marc Hallin, Mathias Drton and Fang Han (Shi et al., 2020); it extends
an earlier paper “Distribution-free consistent independence tests via center-outward ranks
and signs”’, coauthored with Mathias Drton and Fang Han, accepted to the Journal of the
American Statistical Association (Shi et al., 2021a). The last chapter is from “On the power
of Chatterjee’s rank correlation” coauthored with Mathias Drton and Fang Han, accepted to

Biometrika (Shi et al., 2021b).



Chapter 2

HIGH-DIMENSIONAL CONSISTENT INDEPENDENCE
TESTING WITH MAXIMA OF RANK CORRELATIONS

2.1 Introduction

Let X = (Xi,...,X,)" be a random vector taking values in R? and having all univariate

marginal distributions continuous. This paper is concerned with testing the null hypothesis
Hy: Xy,...,X, are mutually independent, (2.1.1)

based on n independent realizations Xi,..., X, of X. Testing H, is a core problem in
multivariate statistics that has attracted the attention of statisticians for decades; see e.g.
the exposition in Anderson (2003, Chap. 9) or Muirhead (1982, Chap. 11). Traditional
methods such as the likelihood ratio test, Roy’s largest root test (Roy, 1957), and Nagao’s
Lo-type test (Nagao, 1973) target the case where the dimension p is small and perform
poorly when p is comparable to or even larger than n. A line of recent work seeks to address
this issue and develops tests that are suitable for modern applications involving data with
large dimension p. This high-dimensional regime is in the focus of our work, which develops
distribution theory based on asymptotic regimes where p = p,, increases to infinity with n.
Many tests of independence in high dimensions have been proposed recently. For example,
Bai et al. (2009) and Jiang and Yang (2013) derived corrected likelihood ratio tests for
Gaussian data. Using covariance/correlation statistics such as Pearson’s r, Spearman’s p,
and Kendall’s 7, Bao et al. (2012), Gao et al. (2017), Han et al. (2018), and Bao (2019)

proposed revised versions of Roy’s largest root test. Schott (2005) and Leung and Drton



(2018) derived corrected Nagao’s Lo-type tests. Finally, Jiang (2004), Zhou (2007), and Han
et al. (2017) proposed tests using the magnitude of the largest pairwise correlation statistics.
Subsequently we shall refer to tests of this latter type as maximum-type tests.

The aforementioned approaches are largely built on linear and simple rank correlations.
These, however, are incapable of detecting more complicated non-linear, non-monotone de-
pendences as Hoeffding (1948) noted in his seminal paper. Recent work thus proposed the use
of consistent rank (Bergsma and Dassios, 2014), kernel-based (Gretton et al., 2008; Pfister
et al., 2018), and distance covariance/correlation statistics (Székely et al., 2007). However,
much less is known about high-dimensional tests of Hj that use these more involved statis-
tics. Notable exceptions include Leung and Drton (2018) and Yao et al. (2018). There,
the authors combined Nagao’s Lo-type methods with rank and distance covariance statistics
that in a tour de force are shown to weakly converge to a Gaussian limit under the null.
In addition, Yao et al. (2018) proved that an infeasible version of their test is rate-optimal
against a Gaussian dense alternative (Gaussian distribution with equal correlation), while
still little is known about optimality of Leung and Drton’s.

In this paper, we derive maximum-type tests that are counterparts of Leung—Drton and
Yao—Zhang—Shao Lo-type ones. As noted in Han et al. (2017), Leung and Drton (2018),
and Yao et al. (2018), maximum-type tests will be more sensitive to strong but sparse
dependence. Designed to assess pairwise independence consistently, our tests are formed
using statistics based on pairwise rank correlation measures such as Hoeffding’s D (Hoeffding,
1948), Blum—Kiefer-Rosenblatt’s R (Blum et al., 1961), and Bergsma—Dassios—Yanagimoto’s
7* (Bergsma and Dassios, 2014; Yanagimoto, 1970). In particular, assuming the pair of
random variables X; and X; to have a joint distribution that is not only continuous but
also absolutely continuous, these measures all satisfy the following three desirable properties

summarized in Weihs et al. (2018):

I-consistency. If X; and X; are independent, the correlation measure is zero.



D-consistency. If X; and X, are dependent, the correlation measure is nonzero.

Monotonic invariance. The correlation measure is invariant to monotone transforma-

tions.

We remark that invariance under invertible (and not just monotonic) transformations
was considered in work on self-equitable measures of dependence (Kinney and Atwal, 2014).
This leads to notions of mutual information whose estimates are different from and usually
more challenging to handle than the rank correlation measures we consider here; see Berrett
and Samworth (2019) and references therein. Indeed, as we shall review in Section 2.2, the
aforementioned correlation measures are naturally estimated via U-statistics, which despite
being degenerate have important special properties.

The contributions of our work are threefold. First, we prove that all the maximum-type
test statistics proposed in Section 2.3 have a null distribution that converges to a (non-
standard) Gumbel distribution under high-dimensional asymptotics. This is in contrast to
the results in Han et al. (2017), where those rank correlation measures that permit consistent
assessment of pairwise independence are excluded from the analysis. This exclusion is due to
the lack of necessary probability tools like Cramér-type moderate deviation bounds for degen-
erate U-statistics, which are newly developed in this paper. Additionally, no distributional
assumption except for marginal continuity is required for this result, and the parameters for
the Gumbel limit can be explicitly given. This allows one to avoid permutation analysis in
problems of larger scale. Second, we conduct a power analysis and give explicit conditions on
a sparse local alternative under which our proposed tests have power tending to one. Third,
we show that the maximum-type tests based on Hoeffding’s D, Blum—Kiefer-Rosenblatt’s R,
and Bergsma—Dassios—Yanagimoto’s 7* are all rate-optimal in the class of Gaussian (copula)
distributions with sparse and strong dependence as characterized in the power analysis. To
our knowledge this is the first rate-optimality result for a feasible test that permits con-

sistent assessment of pairwise independence. These results are developed in Section 2.4.



The theoretical advantages of our tests are highlighted in simulation studies (Section 2.5).
Lastly, we note that, as an interesting by-product of the study, we give an identity among the
above three statistics that helps make a step towards proving Bergsma-Dassios’s conjecture
about general D-consistency of 7%. This observation, along with other discussions, is given

in Section 2.6. All proofs and additional simulation results are deferred to a supplement.

Notation The sets of real, integer, and positive integer numbers are denoted R, 7Z, and
7., respectively. The cardinality of a set A is written #.4. For m € 7., we define [m] =
{1,2,...,m} and write P, for the set of all m! permutations of [m]. Let M = [M};] € RP*P,
and I,.J be two subsets of [p]. Then both M; ; and M][I, J] are used to refer to the sub-
matrix of M with rows indexed by I and columns indexed by J. The matrix diag(M) € RP*P
is the diagonal matrix whose diagonal is the same as that of M. We write I, and J,, for the
identity matrix and all-ones matrix in RP*P, respectively. For a function f : X — R, we
define || ]| := max,ex | f(x)|. The greatest integer less than or equal to z € R is denoted
by |#]. The symbol 1(-) is used for indicator functions. For any two real sequences {a,} and

< by, a, = O(by,), or equivalently b, 2 a,, if there exists C' > 0 such that

~Y

{b,}, we write a,
la,| < Cb,| for any large enough n. We write a,, < b, if both a, < b, and a, = b, hold.

Write a, = o(b,) if for any ¢ > 0, |a,| < ¢|b,| holds for any large enough n. Throughout, ¢

and C' refer to positive absolute constants whose values may differ from line to line.

2.2 Rank correlations and degenerate U-statistics

This section introduces the pairwise rank correlations that will later be aggregated in a
maximum-type test of the independence hypothesis in (2.1.1). We present these correlations
in a general U-statistic framework. In the sequel, unless otherwise stated, the random vector
X is assumed to have continuous margins, that is, its marginal distributions are continuous,

though not necessarily absolutely continuous.



Let X1, ..., X, be independent copies of X = (X1,...,X,)", with X; = (Xy;,..., Xp) "
Let j # k € [p], and let h : (R?)™ — R be a fixed kernel of order m. The kernel h defines a

U-statistic of order m:

_ -1 X X
Ujk:(”) 3 h{( “)( Jm)}. (2.2.1)
m 1<i1 <9< <im<n Xk’h Xk‘im

For our purposes, the kernel h may always be assumed to be symmetric, i.e., h(z1,...,2y) =
h(Zs(1); - - - » Zo(m)) for all permutations o € Py, and 21,..., 2, € R?. Letting z; = (214, 221) ",
if both vectors (z11,...,21m) and (2a1, ..., 22,,) are free of ties, i.e., have marginal distinct
entries, then we have well-defined vectors of ranks (r11,...,71,) and (r91,...,79,), and we

define r; = (ry;,79)" for 1 <4 < n. Now a kernel is rank-based if
h(zi,...,2m) = h(ry, ..., 7n)

for all zy,..., 2, € R*with (211, ..., 21m) and (221, . . ., 22,) free of ties. In this case, we also
say that the “correlation” statistic ﬁjk as well as the corresponding “correlation measure”
E[/}jk is rank-based.

Rank-based statistics have many appealing properties with regard to independence. The
following three will be of particular importance for us. Proofs can be found in, e.g., Chap-
ter 31 in Kendall and Stuart (1979), Lemma C4 in the supplement of Han et al. (2017), and
Lemma 2.1 in Leung and Drton (2018). We also note that, in finite samples, the statistics

{ﬁjk; j < k} are generally not mutually independent.

Proposition 2.2.1. Under the null hypothesis in (2.1.1) and assuming continuous margins,

we have:

(i) The rank statistics {ﬁjk,j # k} are all identically distributed and are distribution-free,
i.e., the distribution of ﬁjk does not depend on the marginal distributions of X1,...,X,;

(11) Fiz any j € [p], then the rank statistics {ﬁjk, k # j}, are mutually independent;



(iii) For any j # k € [p], the rank statistic (/]\jk is independent of{ﬁj/k/;j’, K &{j,k},j #
k'}.

Our focus will be on those rank-based correlation statistics and the corresponding mea-
sures that are induced by the kernel h(:) and are both I- and D-consistent. The kernels of
these measures satisfy important additional properties that we will assume in our general
treatment. Further concepts concerning U-statistics are needed to state this assumption.

For any kernel A(-), any number ¢ € [m], and any measure Pz, we write

ho(z1...,26Pz) =Eh(z1...,20, Zp11,. .., Z1n)

and
h(£)<21, cee, 2y, Pz)
-1
=hy(z1,...,26Pz) —Eh =Y Y h¥(z,,... 2,:Pz), (2.2.2)
k=1 1<i1 <<, <l
where Z1,...,Z,, are m independent random vectors with distribution Pz and Eh :=

Eh(Zy,...,Z,,). The kernel as well as the corresponding U-statistic is degenerate under
Pz if hy(-) has variance zero. We use the term completely degenerate to indicate that the
variances of hq(-),...,hy,_1(:) are all zero. Finally, let Py be the uniform distribution on
0,1], and write Py ® Py for its product measure, the uniform distribution on [0,1]?. Note
that by Proposition 2.2.1(i), the study of ﬁjk under independent continuous margins X; and
X}, can be reduced to the case with (Xj, Xz)" ~ Py @ Py.

Assumption 2.2.1. The kernel h is rank-based, symmetric, and has the following three

properties:

(i) h is bounded.
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(ii) h is mean-zero and degenerate under independent continuous margins, i.e., E{hy(Z;

P0®P0)}2:0 a8Z1~P0®P0.

(i1i) ho(z1, 22; Po ® Po) has uniformly bounded eigenfunctions, that is, it admits the expan-
sion

ha(z1, 22, Po @ Py) = Z Av®o(21)P0(22),
v=1

where {\,} and {¢,} are the eigenvalues and eigenfunctions satisfying the integral
equation

Ehy(21, Z2)$(Zy) = Mp(z1)  for all z; € R?,

with Zy ~ Py @Pg, Ay > Xy >+ >0, A:=3"7 A, € (0,00), and sup,||¢y|o < 0.

The first boundedness property is satisfied for the commonly used rank correlations,
including Kendall’s 7, Spearman’s p, and many others. The latter two properties are much
more specific, but exhibited by the classical rank correlation measures for which consistency
properties are known. We discuss the main examples below. Note also that the assumption

A > 0 implies A; > 0, so that hs(-) is not a constant function.

Example 2.2.1 (Hoeffding’s D). Letting z; = (214, 22;) ', from the symmetric kernel

1
hp(zi,...,25) ::1_6 Z

(i1,...,i5)EPs
H]l(zul < z1i5) — U214, < Zli5)}{]l(zli3 < z1is) — 1214, < 2'11‘5)}}
[{]1(22i1 < zo5;) — (204, < Z2i5)}{]l(z2i3 < zoi) — 1204, < Z%)H,
we recover Hoeffding’s D statistic, which is a rank-based U-statistic of order 5 and gives

rise to the Hoeffding’s D correlation measure Ehp. The kernel hp(-) satisfies the first two

properties in Assumption 2.2.1 in view of the results in Hoeffding (1948). To verify the last
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property, we note that under the measure Py ® Py, hpo(-) is known to have eigenvalues
Nijip = 3/(x'i%5%), i, € Zy;

see, e.g., Proposition 7 in Weihs et al. (2018) or Theorem 4.4 in Nandy et al. (2016). The

corresponding eigenfunctions are

(bi,j;D{(leu ZQI)T} = 2 COS(?Tile) COS(WjZQl), Z,j S Z+.

The eigenvalues are positive and sum to Ap := >, - Aijp = 1/12, and sup, ;{|éijpllec <
2. For any pair of random variables, the correlation measure Ehp > 0 (Hoeffding, 1948,
p. 547). Furthermore, it has been proven that, once the pair is absolutely continuous in
R?, the correlation measure Ehp = 0 if and only if the pair is independent (Hoeffding, 1948;
Yanagimoto, 1970). This property, however, generally does not hold for discrete data or data
generated from a bivariate distribution that is continuous but not absolutely continuous; see

Remark 1 in Yanagimoto (1970) for a counterexample.

Example 2.2.2 (Blum-Kiefer-Rosenblatt’s R). The symmetric kernel
bz = g5 3
Zi,...,26) = ==
R\~1, ) ~6 32 ‘ :
(¢1,-.-,i6)E€Ps
|:{]1(Zli1 < z135) — L(215, < Zlis)}{ﬂ(zlig < 2155) — L(214, < Zli5)H

H]l(z% < 29i) — 1224, < 2216)}{]1(2213 < 2946) — 1221, < Z%)H

yields Blum—Kiefer-Rosenblatt’s R statistic (Blum et al., 1961), which is a rank-based U-
statistic of order 6. One can verify the three properties in Assumption 2.2.1 similarly to
Hoeffding’s D by using that hro = 2hp . In addition, for any pair of random variables, the
correlation measure Ehg > 0 with equality if and only if the pair is independent, and no

continuity assumption is needed at all; cf. page 490 of Blum et al. (1961).
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Example 2.2.3 (Bergsma-Dassios—Yanagimoto’s 7). Bergsma and Dassios (2014) intro-

duced a rank correlation statistic as a U-statistic of order 4 with the symmetric kernel

hT*(Zl, c. ,24)

1
=1z Z { ]]-<z1i17 Z1i3 < Zlig Z1i4) + ]]-<Z1i2, 21y < Z1i1s Zlig)
(i15--»14) EP

— 1(214y5 215y < Z1igs Zlig) - ]1(2’11'2, Zlig < Rlips Zm)}
{ ]1(221‘17 2955 < 22y, 2214) + ]1(22@ 2954 < 2215 221'3)

— ]1(22117 2914 < 22y, Z2i3) - ]1(221‘2, 2955 < 22415 2214)}-

Here, 1(y1,y2 < v3,y1) = L1 < y3)1(yh < ya)1(y2 < y3)1(y2 < wy4). It holds that
h.«2 = 3hpo and all properties in Assumption 2.2.1 also hold for h,«(-). Theorem 1 in
Bergsma and Dassios (2014) shows that for a pair of random variables whose distribution
is discrete, absolutely continuous, or a mixture of both, the correlation measure Eh.« > 0
where equality holds if and only if the variables are independent. It has been conjectured
that this fact is true for any distribution on R2. In Section 2.6.2 of this paper we make new
progress along this track. This progress is based on early but apparently little known results

of Yanagimoto (1970) that prompted us to add his name in reference to 7*.
2.3 Maximum-type tests of mutual independence

We now turn to tests of the mutual independence hypothesis Hy in (2.1.1). As in Han et al.
(2017), we propose maximum-type tests. However, in contrast to Han et al. (2017), we
suggest the use of consistent and rank-based correlations with the practical choices being the
ones from Examples 2.2.1-2.2.3. As these measures are all nonnegative, it is appropriate to
consider a one-sided test in which we aggregate pairwise U-statistics ﬁjk in (2.2.1) into the
test statistic

—~

M, = (n—1 Us.
n = (n—1)max Uy
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We then reject Hy if J/\/[\n is larger than a certain threshold. Note that we tacitly assumed
(/jjk = Ukj when maximizing over j < k; this symmetry holds for any reasonable correlation
statistic. We emphasize once more that, since the statistic is constructed based on pairs
{Xi;, Xiktiepn), the proposed tests are designed to assess pairwise independence consistently.

By Proposition 2.2.1(i), the statistic ]\/Zn is distribution-free in the class of multivariate
distributions with continuous margins. An exact critical value for rejection of Hy could thus
be approximated by Monte Carlo simulation. However, as we will show, extreme-value theory
yields asymptotic critical values that avoid any extra computation all the while giving good
finite-sample control of the test’s size. When presenting this theory, we write X LY if two
random variables X and Y have the same distribution, and we use 95 to denote “weak
convergence”.

If, under Hy, the studied statistic (n— 1)[Afjk weakly converged to a chi-square distribution
with one degree of freedom, as in Theorems 1 and 2 of Han et al. (2017), then extreme-
value theory combined with Proposition 2.2.1 would imply that a suitably standardized
version of ]\//Tn would weakly converge to a type-I Gumbel distribution with distribution
function exp{—(87) "2 exp(—y/2)}. However, the degeneracy stated in Assumption 2.2.1(ii)
rules out this possibility. Classical theory yields that instead of a single chi-square variable,
we encounter convergence to much more involved infinite weighted series (Serfling, 1980,

Chap. 5.5.2).

Proposition 2.3.1. Let X have continuous margins, and let j # k. If h(-) satisfies As-
sumption 2.2.1, then under Hy,

(5) =003 ae -

where {£,,v =1,2,...} are i.i.d. standard Gaussian random variables.

Note that the weak convergence result for degenerate U-statistics in Proposition 2.3.1
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holds under much weaker conditions than Assumption 2.2.1; see the main theorem in Serfling
(1980, Chap. 5.5.2) for detailed conditions. Our intuition for the asymptotic forms of the
maxima now comes from the following fact, though the analysis of max;j, U jk Tequires more

refined techniques since {lAfjk; j < k} are in general not mutually independent.

Proposition 2.3.2. LetYi,...,Y; be d = p(p—1)/2 independent copies of ¢ 4 oo (-

1). Then, as p — o0,

Y; A
L _4logp — (g — 2)1logl - 4 q.
max < ogp — (1 — 2)loglogp + N

Here G follows a Gumbel distribution with distribution function

2/‘1/272/{ y
exp{ - —ZTexp (- 2)},
T /2) 2
where py is the multiplicity of the largest eigenvalue Ay in the sequence {\1,Aa, ...}, Kk =

[, (1 Ao/X) V2 and T(z) = [ a* e "dx is the gamma function.

Obviously, when setting Ay = 1, A\ = A3 = --- = 0 in Proposition 2.3.2, we recover the
Gumbel distribution derived by Han et al. (2017). Based on Propositions 2.3.1 and 2.3.2,

for any pre-specified significance level a € (0, 1), our proposed test is

n—1 ~ A
T, :z]l{—ma Ui — 4logp — (1 — 2) loglog p + — > a}, 2.3.1
() e Ui gp — (i — 2)loglogp + = > Q (2.3.1)
where
oH =42
Qo = log —2loglog(l — a)™*

{D(a/2)}?

is the 1—a quantile of the Gumbel distribution of distribution function exp{—2#1/2=2k /T"(j1, /2)-
exp(—y/2)}. However, note that so far the test results merely from heuristic arguments. The-
oretical justifications regarding the test’s size and power under the high-dimensional regime

will be given in Section 2.4.
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Example 2.3.1 (“Extreme D”). Hoeffding’s D statistic introduced in Example 2.2.1 is

~1
~ n
Djk = ( ) Z hD{(‘inuth)T?'"7(in5>in5)T}'

5) . .
11<---<15
According to (2.3.1), the corresponding test is

7t(n—1) ~ m
Tpa:i= ]I{T I§1<8;3<Djk —4logp + loglogp + 36 > QD,O{},

where Qp , = log{x%/(87)} — 2loglog(l — a)~! and

o S om/n 12 N

Example 2.3.2 (“Extreme R”). Blum-Kiefer-Rosenblatt’s R statistic from Example 2.2.2
is )
~ n\
Rjk = (6) Z hR{(inninl)Ta sy ( Jier inﬁ)T}'
11<-<ig
According to (2.3.1), the corresponding test is
mt(n —1) m

max ﬁjk —4logp + loglogp +

Thra = ]l{
&, 90  j<k 36

> QR,a}a

where QR,O& = QD,a-

Example 2.3.3 (“Extreme 7). Bergsma-Dassios—Yanagimoto’s 7* statistic from Example

2.2.31s )
e ny
Tik = (4) § hT*{(inlek‘il)T""?( ji47in4)T}'

i< <i
According to (2.3.1), it yields the test
4

7t (n —1) . T
Trea = 11{5—4 jggcrjk — 4logp + loglogp + 36 > QT*’Q},

where Q-+« o = Qp.a-

Note that, by the definitions of the kernels and the identity (2.6.1) that will be introduced
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in Section 2.6.2, as long as there is no tie in the data, for any j, k € [p],
ijj = Ejj = %\]ikj =1 and 313]]{} + 2§jk’ = 5%\]2 (232)

Remark 2.3.1. In applying the above tests we have intrinsically assumed that there are no
ties among the entries Xj1,..., X, for each j € [p]. This is based on the assumption that
X = (Xi,...,X,)" has continuous margins. In practice, however, data in finite accuracy
might feature ties or may indeed be drawn from a distribution that is not of a continuous
margin. In such cases, conducting the above tests on the original data may distort the size.
To fix this, as was discussed in Remark 2.1 in Heller et al. (2016), one may break the ties
randomly so that the above tests remain distribution-free. Also see Chapter 8 in Hollander

et al. (2014) for more discussions on how to break ties for rank-based tests.
2.4 Theoretical analysis

This section provides theoretical justifications of the tests proposed in Section 2.3. The
section is split into two parts. The first part rigorously justifies the proposed asymptotic

critical values. The second part gives a power analysis and shows optimality properties.

2.4.1 Size control

In this section, we derive the limiting distribution of the statistic ]\/Zn under Hy. The below
Cramér-type moderate deviation theorem for degenerate U-statistics under a general proba-
bility measure is the foundation of our theory. There has been a large literature on deriving
the moderate deviation theorem for non-degenerate U-statistics (see, for example, Shao and
Zhou (2016) for some recent developments) as well as Berry—Esseen-type bounds for degener-
ate U-statistics (see Bentkus and Gotze (1997) and Gotze and Zaitsev (2014) among many).
However, to our knowledge, the literature does not provide a comparable moderate deviation

theorem for degenerate U-statistics.
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Theorem 2.4.1 (Cramér-type moderate deviation for degenerate U-statistics). Let Z3, ..., Z,
be (not necessarily continuous) i.i.d. random variables with distribution Py. Consider the

U-statistic

-1
~ n

= g h(Z;,...,Z;
Un <m) ( 11 Y Zm)?

1<ii < <im<n

where the kernel h(-) is symmetric and such that (i) |h||e < 00, (i) hi(Z1;Pz) = 0 almost

surely, and (iii) ho(z1, 22; Pz) admits the eigenfunction expansion,
ha(z1,22:Pz) = Y Autu(21) 0 (22),
v=1

with Ay > Xy > - >0, A= 2 \, € (0,00), and sup,||¢y||c < c0. We then have, for

any sequence of positive scalars e, — 0,

1. P{(p) "0 - 10, >,
1m sup
N0 €[~ Aennt) P{ Zzil Av(é—g - ]') > l’n}

—1| =0,

where {&,,v = 1,2,...} are i.i.d. standard Gaussian, and 6 is any absolute constant such

that
0 < sup{q €1[0,1/3): Z

if infinitely many of eigenvalues \, are nonzero, and 0 = 1/3 otherwise.

Ao = O(n‘q)} (2.4.1)

v> Ln(1*34)/5j

In Theorem 2.4.1, when there are only finitely many nonzero eigenvalues, the range
o(n'/?) is the standard one for Cramér-type moderate deviation. When there are infinitely
many nonzero eigenvalues, it is still unclear if the range o(n?) is the best possible one. It is
certainly an interesting question to investigate the optimal range for degenerate U-statistics
in the future. With the aid of Theorem 2.4.1 and combining it with Proposition 2.3.2, we
can now show that, under Hj, even if p is exponentially larger than the sample size n, our
maximum-type test statistic still weakly converges to the Gumbel distribution specified in

Proposition 2.3.2. Hence, the proposed test T, in (2.3.1) can effectively control the size.
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Theorem 2.4.2 (Limiting null distribution). Assume Xi,..., X, are continuous and the
independence hypothesis Hy holds. Let Ujk, j < k, have a common kernel h that satisfies
Assumption 2.2.1. Define the parameter 0 as in (2.4.1). Then if p = p, goes to infinity with
n such that logp = o(n?), it holds for any absolute constant y € R that

-1 ~ A
P{n—max Ujk — 4logp — (ju — 2)loglogp + = < y}
1

A () J</k
Q1/2-2
= exp{ — Wexp(— %)} +0(1)

Consequently,

where Py, represents the probability under the null hypothesis Hy.

Note that the proof of Theorem 2.4.2 uses the Chen—Stein method, via Theorem 1 of
Arratia et al. (1989), which is able to handle our case where the random variables are
not mutually independent. We emphasize that our theory holds without any distributional
assumption on X except for marginal continuity. This property of being distribution-free
in the class of multivariate distributions with continuous margins is essentially shared by all
rank-based correlation measures, but is clearly not satisfied by other measures like linear or
distance covariance as was illustrated, for example, by Jiang (2004) and Yao et al. (2018).

As a simple consequence of Theorem 2.4.2, the following corollary shows that the tests

in Examples 2.3.1-2.3.3 have asymptotically correct sizes, with 6 being explicitly calculated.

Corollary 2.4.1. Let Xy,..., X, be continuous. Let p go to infinity with n in such a way

that logp = o(n'/87?) for some arbitrarily small pre-specified constant § > 0. Then

PHO(TD,a = 1) = —f-O(l), PHO(TR,a = 1) = —f-O(l),

and Pp,(Tro=1)=a+o(1).
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2.4.2  Power analysis and rate-optimality

We now investigate the power of the proposed tests from an asymptotic minimax perspective.
The key ingredient is the choice of a suitable distribution family as an alternative to the null
hypothesis in (2.1.1). Recall the definition of A()(-) in (2.2.2). For any kernel function h(-)
and constants v > 0 and g € Z,, define a general ¢g-dimensional (not necessarily continuous)

distribution family as follows:
D(v,q;h):= {E(X) : X € R Var {hW(-;P;1)} <AE;h forall j #k € [[q]]},

where £(X) is the distribution (law) of X, and Pjz, E;x(-), and Var,,(-) stand for the
probability measure, expectation, and variance operated on the bivariate distribution of
(X;, Xi) T, respectively.

The family D(v, ¢; h) intrinsically characterizes the slope of the function Varj, {hM) (-; Pjx)}
with regard to the dependence between X; and X, characterized by the “correlation mea-

sure” E;ih. Intuitively, consider E;;h as a rank correlation measure of dependence between

X; and Xj. When X is independent of Xj, we have that
Varjp {hV (P, @ Py)} = 0 = Ejuh

as long as Assumption 2.1 holds for h(-). Therefore, heuristically, as the dependence between
X; and X}, increases, it is possible that the variance Var;,{hV(-;P;;)} will deviate from 0
at the same or a slower rate compared to [E;;h. Note that both parameters are nonnegative.
The next lemma firms up this intuition by establishing that the Gaussian family belongs to
D(~,q; h) for all the kernels h(-) considered in Examples 2.2.1 to 2.2.3, provided ~ is large

enough.

Lemma 2.4.1. There exists an absolute constant v > 0 such that for all ¢ € Z*, any

q-dimensional Gaussian distribution is in D(7y,q;hp), D(v,q; hr), and D(v,q; h.+).
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Next we introduce a class of matrices indexed by a positive constant C' as
U,(C) = {M € RP : max{Mj;} > C(log p/n)}.
j<

Such matrices will define a “sparse local alternative” as considered also in Section 4.1 in
Han et al. (2017). Note, however, that in our case the scale is at the order of logp/n as
opposed to (logp/n)*/? in Han et al. (2017). This is due to our statistics being degenerate
under independence. Hence, the variance of h((-) is zero under the null, while nonzero for
these statistics investigated in Han et al. (2017). It should also be noted that these two
classes cannot be directly compared; intuitively the consistent measures are defined on a
squared scale when contrasted to the non-consistent measures. As will be shown later, in
the example of the Gaussian case, both classes correspond to a condition on the Pearson
correlation obeying the rate (logp/n)/2.

The following theorem now describes “local alternatives” under which the power of our

general test T, tends to one as both n and p go to infinity.

Theorem 2.4.3 (Power analysis, general). Given any v > 0 and a kernel h(-) satisfying
Assumption 2.2.1, there exists some sufficiently large C., depending on ~ such that

liminf inf Py(T,=1)=1,

n,p—00 Uelp(Cy)

where, for each specified (n,p), the infimum is taken over all distributions in D(v,p; h) that
have the matriz of population dependence coefficients U = [Uj| in U,(C,). Here, Uy, :=
EU.

The proof of Theorem 2.4.3 only uses the Hoeffding decomposition for U-statistics, Bern-
stein’s inequality for the sample mean part, and Arcones and Giné’s inequality for the degen-
erate U-statistics parts (Arcones and Giné, 1993). Consequently, we do not have to assume

any continuity of X. The theorem immediately yields the following corollary, characterizing
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the local alternatives under which the three rank-based tests from Examples 2.3.1-2.3.3 have

power tending to 1.

Corollary 2.4.2 (Power analysis, examples). Given any~y > 0, we have, for some sufficiently
large C,, depending on 7,

liminf inf Pp(Tp,=1)=1, liminf inf Pgr(Tp.=1)=1,

n,p—00 Delly(Cy) n,p—00 ReUy(Cs)

liminf inf Pp(Trp=1)=1,

n.p—00 T €Uy (C)

where, for each specified (n,p), the infima are taken over all distributions in D(vy,p;hp),
D(v,p; hr), and D(v,p; h.+) with population dependence coefficient matrices D = [Dji],
R = [Rjk], and T* = [T]?‘k] for Dy, = ElA)jk, Rj = E]A%jk, and 75, = E?‘\]Tkk, respectively.

We now turn to optimality of the proposed tests. There have been long debates on
the power of consistent rank-based tests compared to those based on linear and simple rank
correlation measures. As a matter of fact, Blum et al. (1961) have given interesting comments
on this topic, stating that the required sample size for the bivariate independence test based
on hg(+) is of the same order as that in common parametric cases, hinting that even under a
particular parametric model these nonparametric consistent tests of independence can be as
rate-efficient as tests that specifically target the considered model. Leung and Drton (2018)
and Han et al. (2017), among many others, derived rate-optimality results for rank-based
tests. However, their results do not cover those that permit consistent assessment of pairwise
independence. Recently, Yao et al. (2018) made a first step towards a minimax optimality
result for consistent tests of independence. Their result shows an infeasible version of a
test based on distance covariance to be rate-optimal against a Gaussian dense alternative.
However, it remained an open question if there exists a feasible (consistent) test of mutual
independence in high dimensions that is rate-optimal against certain alternatives. Below we

are able to give an affirmative answer.
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We shall focus on the proposed tests in Examples 2.3.1-2.3.3 and show their rate-

optimality in the Gaussian model. To this end, we define a new alternative class of matrices

1
V(C’)::{ME]RPXP; M = 0, diag(M) =1, M=M " max [1My| > € / in}’

where M > 0 denotes positive semi-definiteness. We then have the following theorem as
a consequence of Corollary 2.4.2. It concerns the proposed tests’ power under a Gaussian
model with some nonzero pairwise correlations but for which these are decaying to zero as
the sample size increases, and is immediate from the fact that, as (X;, X;)" is bivariately

normal with correlation pj;, we have
* o 2
Djka RjknTjk = Pl aS Pjk — 0.

Since the test statistics are all rank-based and thus invariant to monotone marginal transfor-
mations, extension of the following result to the corresponding Gaussian copula family with

continuous margins is straightforward.

Theorem 2.4.4 (Power analysis, Gaussian). For a sufficiently large absolute constant Cy >
0, we have, as long as n,p — oo,
inf Px(Tpa=1)=1—o(1), inf Px(Tra=1)=1-o(1),
261\1}(00) 2( D, ) 0( ) 261]1}(00) E( R, ) 0( )

and inf Px(Tnn=1)=1-0(1),
3eV(Co)

where infima are over centered Gaussian distributions with (Pearson) covariance matriz 3 =

(k]

The proof of Theorem 2.4.4 is given in the supplement. It relies on Lemma 2.4.1 and the
fact that Dk, Ry, 77 < Z?k as X, — 0. Combined with the following result from Han et al.
(2017), Theorem 2.4.4 yields minimax rate-optimality of the tests in Examples 2.3.1-2.3.3

against the sparse Gaussian alternative.
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Theorem 2.4.5 (Rate optimality, Theorem 5 in Han et al., 2017). There ezists an absolute
constant ¢y > 0 such that for any number B > 0 satisfying o + B < 1, in any asymptotic
regime with p — oo as n — 0o but logp/n = o(1), it holds for all sufficiently large n and p
that

“inf  sup Px(To=0)>1—a—p.
Ta€Ta 3eV(co)

Here the infimum is taken over all size-a tests, and the supremum is taken over all centered

Gaussian distributions with (Pearson) covariance matriz 3.
2.5 Simulation studies

In this section we compare the finite-sample performance of the three tests (Extreme D,
Extreme R, and Extreme 7*) from Section 2.3 to eight existing tests proposed in the literature
via Monte Carlo simulations. The first eight tests are rank-based and hence distribution-free
in the class of multivariate distributions with continuous margins, while the other three tests

are distribution-dependent:

e DHSp: the maximum-type test in Example 2.3.1;

e DHSg: the maximum-type test in Example 2.3.2;

e DHS,.: the maximum-type test in Example 2.3.3;

e LD,: the Lo-type test based on Kendall’s 7 (Leung and Drton, 2018);

e LD,: the Lo-type test based on Spearman’s p (Leung and Drton, 2018);

e LD, .: the Ly-type test based on Bergsma—Dassios—Yanagimoto’s 7* (Leung and Drton,
2018);

e HCL,: the maximum-type test based on Kendall’s 7 (Han et al., 2017);
e HCL,: the maximum-type test based on Spearman’s p (Han et al., 2017);

e YZS: the Lo-type test based on the distance covariance statistic (Yao et al., 2018);
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e SC: the Lo-type test based on Pearson’s r (Schott, 2005);

e CJ: the maximum-type test based on Pearson’s r (Cai and Jiang, 2011).

2.5.1 Computational aspects

Throughout this section {z; = (21, ZQi)T}ie[[n]] is a bivariate sample that contains no tie. We
first discuss how to compute the U-statistics ﬁ, }/%, and 7 for Hoeffding’s D, Blum-Kiefer—
Rosenblatt’s R, and Bergsma—Dassios—Yanagimoto’s 7, respectively. As we review below,
efficient algorithms are available for D and 7*. The value of R may then be found using the
relation in (2.3.2).

Hoeffding (1948) himself observed that D can be computed in O(nlogn) time via the

following formula
D P-2-2Q+(n—2)(n-3)S
30 nn—-1)n-2)(n-3)(n—-4)

Here
P = i(rZ — 1) (r; —2)(s; — 1) (s — 2),
i=1
Q= i(n —1)(s; = Ve, S := ici(ci - 1),
i=1 =1
and r; and s; are the ranks of zy; among {z11,...,21,} and zy; among {zo1,...,29,}, re-

spectively. Moreover, ¢; is the number of samples z; = (214, z9i7) for which zy; < z3; and
2oy < Z94-

Weihs et al. (2016) and Heller and Heller (2016b) proposed algorithms for efficient com-
putation of the Bergsma—-Dassios—Yanagimoto statistic 7°. Without loss of generality, let

z11 < -0+ < Zip, Le., r; = 4. Weihs et al. (2016) proved that 27*/3 = N,/ (}) — 1/3 with

- 5, (4 (4)

3<U< <n
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where for all £ < ¢,

B_[0,0] :=#{i:i €[l —1], 22 < min(za, 200)}

and B.[l(, 0] :=#{i:i € [€ — 1], 2z9; > max(2a0, 22¢) }.

Weihs et al. (2016) went on to give an algorithm to compute these counts, and thus 77,
in O(n?logn) time with little memory use. Heller and Heller (2016b) showed that the
computation time can be further lowered to O(n?) via calculation of the following matrix

based on the empirical distribution of the ranks r; and s;,
n
Bir,s] := Z]l(ﬁ‘ <rs<s), 0<rs<n.
=1

Here, BJr,0] := 0 and BJ0, s] := 0. We may then find B_[¢, /] = B[/ — 1, min(s;, sp) — 1] and
B. [0, V'] = —B[l{,max(sy, s¢)| for all £ < ¢'; recall that s; is the rank of zo; in {221, ..., 22, }.

As a consequence, formula (2.3.2) now also yields an O(n?) algorithm for R.

Regarding other competing statistics, note that Pearson’s r and Spearman’s p can be
naively computed in time O(n) and O(nlogn), respectively. Knight (1966) proposed an effi-
cient algorithm for computing Kendall’s 7 that has time complexity O(nlogn). Finally, the
algorithm of Huo and Székely (2016) computes the distance covariance statistic in O(nlogn)

time.

Table 2.1 shows empirical computation times for the considered statistics on 1,000 bi-
variate samples of size n = 100,200,400, and 800, respectively randomly generated as
i.i.d. standard bivariate normal. The timings are based on available functions in R. Pear-
son’s v and Spearman’s p were computed using the basic cor() function, with option
method="spearman" for p. Kendall’'s 7 was computed with the function cor.fk() from
package pcaPP, Hoeffding’s D with hoeffD() from SymRC, Bergsma-Dassios—Yanagimoto’s

7* with tStar() from TauStar, and the distance covariance with dcov2d() from energy.
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Table 2.1: A comparison of computation time for all the correlation statistics considered.
The computation time here is the averaged elapsed time (in milliseconds) of 1,000 replicates
of a single experiment.

Hoeffding’s BDY’s Pearson’s Spearman’s Kendall’s distance
n " correla-
D T r p .
tion
100 0.270 0.167 0.060 0.121 0.064 0.667
200  0.962 0.543 0.080 0.144 0.085 1.194

400  4.419 2.364 0.099 0.206 0.106 2.313
800  9.683 20.860  0.103 0.327 0.148 4.410

Blum-Kiefer-Rosenblatt’s 1R was then obtained using identity (2.3.2), and its computation
time is thus omitted. All experiments are conducted on a laptop with a 2.6 GHz Intel Core

i5 processor and a 8 GB memory.

While the above statistics can all be computed efficiently using special purpose algo-
rithms, our theory also covers general rank-based statistics for which only a naive algorithm
that follows the U-statistic definition may be available. The complexity of computing the
statistic could then be a high degree polynomial of the sample size. We note that in this
case, it may become necessary to use resampling and subsampling techniques to decrease
computational effort, as was done by Bergsma and Dassios (2014, Section 4) when applying

their statistics before efficient algorithms for its computation were developed.

2.5.2  Simulation results

We evaluate the empirical sizes and powers of the eleven competing tests introduced above
for both Gaussian and non-Gaussian distributions. The values reported below are based on
5,000 simulations at the nominal significance level of 0.05, with sample size n € {100,200}
and dimension p € {50,100, 200,400,800}. All data sets are generated as an i.i.d. sample

from the distribution specified for the p-dimensional random vector X.
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We investigate the sizes of the tests in four settings, where X = (Xy,...,X,)" has
mutually independent entries. In the following, with slight abuse of notation, we write
f(v) = (f(v1),..., f(v,))" for any univariate function f : R — R and v = (vy,...,v,) €
RP.

Example 2.5.1.

(a) X ~ N,(0,I,) (standard Gaussian).
(b) X = W3 with W ~ N,(0,1,) (light-tailed Gaussian copula).
() X = W3 with W ~ N,(0,1,) (heavy-tailed Gaussian copula).

(d) Xi,...,X, are i.i.d. with a t-distribution with 3 degrees of freedom.

The simulated sizes of the eight rank-based tests are reported in Table 2.2. Those of the
three distribution-dependent tests are given in Table 2.3. As expected, the tests derived from
Gaussianity (SC, CJ) fail to control the size for heavy-tailed distributions. In contrast, the
other tests control the size effectively in most circumstances. A slight size inflation is observed
for DHSp at small sample size, which can be addressed using Monte Carlo approximation to
set the critical value. In addition, when considering different pairs of (n,p) in Table 2.2, as
long as n and p grow simultaneously, a trend to the nominal level 0.05 is clear; e.g., as (n, p)
grows from (100, 200) to (200, 400), the empirical size of DHS changes from 0.076 to 0.064,
that of DHSg changes from 0.028 to 0.040, and that of DHS,+ changes from 0.036 to 0.045.
These phenomena back up Corollary 2.4.1, and this trend persists in more simulations as n
and p become even larger.

In order to study the power properties of the different statistics, we consider three sets of
examples. We remark that, regarding the power, for Lo-type and maximum-type tests, one
cannot dominate the other; compare the power analyses in Section 3.3 in Cai et al. (2013)

and Section 5.2 in Leung and Drton (2018). To reflect this, we consider two sets of examples
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Table 2.2: Empirical sizes of the eight rank-based tests in Example 2.5.1

n p DHSp DHSp DHS,. LD, LD, LD,. HCL, HCL,
100 50 0.070 0.042 0.047 0.054 0.048 0.056 0.037 0.028
100 0.073 0.035 0.042 0.055 0.047 0.066 0.034 0.021
200 0.076 0.028 0.036 0.058 0.050 0.059 0.028 0.015
400 0.084 0.025 0.035 0.054 0.045 0.065 0.025 0.012
800 0.088 0.021 0.032 0.055 0.049 0.062 0.023 0.008
200 50 0.054 0.042 0.044 0.048 0.044 0.051 0.037 0.034
100 0.057 0.042 0.044 0052 0.047 0.052 0.038 0.032
200 0.059 0.038 0.042 0.052 0.050 0.055 0.037 0.032
400 0.064 0.040 0.045 0.051 0.048 0.053 0.038 0.027
800 0.065 0.034 0.040 0.051 0.047 0.055 0.034 0.024

that focus on relatively sparse settings (modified based on Yao et al. (2018) and Han et al.
(2017)) but also include a very dense third setup (modified based on Leung and Drton (2018)
with an adjustment to dimension as suggested in Cai and Ma (2013, Theorems 1 and 4)).

Example 2.5.2.
(a) The data are generated as X = (X, X, )", where
X, = (w',sin(2mw) ", cos(2mw) ", sin(4rw) ", cos(4rw) ") € RY

with w ~ NQ(O,IQ), and X2 ~ Np_l()(o, Ip—lO) independent of Xl.

(b) The data are generated as X = (X', X, )", where
X, = (w',log(w?) )" € RY
with w ~ N5(0,1I5), and Xo ~ N,_10(0,1,_19) independent of X.
Example 2.5.3.

(a) The data are drawn as X ~ N,(0,R*) with R* generated as follows: Consider a

random matrix A with all but eight random nonzero entries. We select the locations
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Table 2.3: Empirical sizes of the three distribution-dependent tests in Example 2.5.1

n p YZS SC CJ YZS SC CJ YZS SC CJ YZS SC CJ
Results for Case (a) Results for Case (b) Results for Case (¢) Results for Case (d)
100 50 0.048 0.051 0.029 0.052 0.052 0.036 0.055 0.210 0.974 0.055 0.081 0.479
100 0.054 0.052 0.018 0.048 0.047 0.032 0.052 0.206 1.000 0.053 0.083 0.781
200 0.059 0.051 0.013 0.055 0.055 0.024 0.052 0.207 1.000 0.058 0.089 0.974
400 0.049 0.049 0.011 0.053 0.051 0.022 0.052 0.210 1.000  0.055 0.089 1.000
800 0.050 0.045 0.005 0.050 0.048 0.018 0.055 0.222 1.000 0.051 0.092 1.000
200 50 0.050 0.044 0.032 0.050 0.052 0.040 0.054 0.194 0.955 0.050 0.086 0.527
100 0.049 0.049 0.029 0.049 0.051 0.036 0.048 0.190 1.000 0.052 0.089 0.850
200 0.053 0.049 0.030 0.052 0.053 0.035 0.055 0.193 1.000 0.050 0.085 0.996
400 0.051 0.049 0.022  0.050 0.048 0.035 0.050 0.193 1.000 0.050 0.091 1.000
800 0.050 0.053 0.018 0.051 0.053 0.033 0.052 0.188 1.000 0.049 0.088 1.000

of four nonzero entries randomly from the upper triangle of A, each with a magnitude
randomly drawn from the uniform distribution in [0, 1]. The other four nonzero entries

in the lower triangle are determined to make A symmetric. Finally,
R"=(14+0)I,+ A,

where 0 = {—Anin(I, + A) +0.05} - T{\nin(I, + A) < 0} and Ayin(-) denotes the

smallest eigenvalue of the input.
(b) The data are drawn as X = sin(27rZ'/3/3), where Z ~ N,(0,R*) with R* as in (a).
(c) The data are drawn as X = sin(7Z3/4), where Z ~ N, (0, R*) with R* as in (a).

Example 2.5.4. The data are drawn as X ~ N,(0,R*), where R* = (1 — o)L, + oJ,, with
o such that

(a) (8)(2arcsing/m)? = p/n;
(b) (5)(2arcsino/7)* = (3/2) - p/n;

(c¢) (b)(2arcsin o/m)* = 2p/n.
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The powers for Examples 2.5.2-2.5.4 are reported in Tables 2.4-2.6. Several observations
stand out. First, throughout the sparse examples, we found that the proposed tests have
the highest powers on average. Among the three proposed tests, the power of DHSp is
highest on average, followed by DHS,«. Recall, however, that DHSp can be subject to
slight size inflation. Second, focusing on the results in Example 2.5.2, we note that, as more
independent components are added, the power of YZS significantly decreases. This is as
expected and indicates that YZS is less powerful in detection of sparse dependences. In
addition, both HCL, and HCL, perform unsatisfactorily in Example 2.5.2, indicating that
they are powerless in detecting the considered non-linear, non-monotone dependences, an
observation that was also made in Yao et al. (2018). Fourth, Tables 2.4 and 2.5 jointly confirm
the intuition that, for sparse alternatives, the proposed maximum-type tests dominate Lo-
type ones including both YZS and LD,«, especially when p is large. In addition, we note
that, under the setting of Example 2.5.3, the performances of HCL, and HCL, are the second
best to the proposed consistent rank-based tests, indicating that there exist cases in which
simple rank correlation measures like Kendall’s 7 and Spearman’s p can still detect aspects
of non-linear non-monotone dependences. Fifth, under a Gaussian parametric model, Table
2.5 (the first part) shows that CJ, the maximum-type test based on Pearson’s r, indeed
outperforms all others, though the difference between it and the proposed rank-based ones is
small. Lastly, Table 2.6 shows that, as the signals are rather dense, Lo-type tests dominate
the maximum-type ones, confirming the intuition and also the theoretical findings that Lo-

type ones are more powerful in the dense setting.

We end this section with a discussion of the simulation-based approach. In view of
Proposition 2.2.1, the distributions of rank-based test statistics are invariant to the generating

distribution, and hence we may use simulations to approximate the exact distribution of

1 ~ A
S =~ max Uy — 4logp — (1, — 2) loglog p + T
1

T (g) e



31

Table 2.4: Empirical powers of the eleven competing tests in Example 2.5.2

n p DHSp DHSg DHS,- LD, LD, LD, HCL, HCL, YZS SC CJ
Results for Example 2.5.2(a)

100 50 1.000 1.000 1.000 0.058 0.049 1.000 0.089 0.033 0.442 0.047 0.024
100 1.000 1.000 1.000 0.055 0.045 1.000 0.070 0.025 0.156 0.049 0.018
200 1.000 1.000 1.000 0.052 0.046 1.000 0.049 0.017 0.071 0.048 0.011
400 1.000 1.000 1.000 0.058 0.049 0.973 0.043 0.014 0.057 0.050 0.011
800 1.000 0.827 1.000 0.061 0.052 0.520 0.029 0.009 0.054 0.050 0.007

200 50 1.000 1.000 1.000 0.053 0.045 1.000 0.099 0.038 0.955 0.053 0.033
100 1.000 1.000 1.000 0.055 0.051 1.000 0.080 0.038 0.435 0.050 0.032
200 1.000 1.000 1.000 0.048 0.045 1.000 0.060 0.028 0.142 0.045 0.023
400 1.000 1.000 1.000 0.052 0.047 1.000 0.049 0.023 0.078 0.048 0.023
800 1.000 1.000 1.000 0.057 0.052 1.000 0.044 0.020 0.053 0.050 0.021

Results for Example 2.5.2(b)

100 50 1.000 1.000 1.000 0.065 0.049 1.000 0.106 0.037 0.984 0.049 0.026
100 1.000 1.000 1.000 0.054 0.046 1.000 0.078 0.026 0.660 0.046 0.020
200 1.000 1.000 1.000 0.059 0.052 1.000 0.055 0.018 0.266 0.051 0.014
400 1.000 1.000 1.000 0.059 0.052 0.996 0.039 0.014 0.107 0.046 0.010
800 1.000 0.897 1.000 0.059 0.051 0.642 0.030 0.007 0.067 0.052 0.005

200 50 1.000 1.000 1.000 0.062 0.053 1.000 0.120 0.042 1.000 0.050 0.033
100 1.000 1.000 1.000 0.053 0.047 1.000 0.087 0.040 0.996 0.045 0.036
200 1.000 1.000 1.000 0.051 0.047 1.000 0.061 0.030 0.729 0.045 0.023
400 1.000 1.000 1.000 0.053 0.050 1.000 0.050 0.023 0.272 0.053 0.023
800 1.000 1.000 1.000 0.047 0.044 1.000 0.042 0.021 0.102 0.046 0.016

In detail, we pick a large integer M to be the number of independent replications. For each
t € [M], compute S® as the value of S for an n x p data matrix X*) € R"*? drawn as having
i.i.d. Uniform(0,1) entries. Let ﬁnﬁp;M(y) = ﬁZi‘il 1{S® < y}, y € R, be the resulting
empirical distribution function. For a specified significance level a € (0,1), we may now use

the simulated quantile @WW;M =inf{y e R: ﬁn,p;M(y) > 1— a} to form the test

n—1 ~ A ~
Toxact = ]1{ max Uy, — 4logp — (11 — 2) loglog p + o™ > Qa7n7p;M}.
1

NG
The test becomes exact in the large M limit, immediately by the Dvoretzky—Kiefer—Wolfowitz

inequality for empirical distribution functions (e.g., Kosorok, 2008, Theorem 11.6), and is



Table 2.5: Empirical powers of the eleven competing tests in Example 2.5.3

n p DHSp DHSp DHS,. LD,

100 50
100
200
400
800
200 50
100
200
400
800

100 50
100
200
400
800
200 50
100
200
400
800

100 50
100
200
400
800
200 50
100
200
400
800

0.967
0.959
0.950
0.936
0.931
0.991
0.984
0.984
0.986
0.980

0.759
0.747
0.720
0.702
0.679
0.897
0.880
0.855
0.849
0.820

0.654
0.656
0.635
0.617
0.597
0.824
0.812
0.792
0.776
0.755

0.962
0.952
0.938
0.924
0.911
0.991
0.985
0.983
0.983
0.976

0.642
0.624
0.583
0.557
0.512
0.843
0.819
0.789
0.768
0.738

0.579
0.566
0.527
0.496
0.455
0.789
0.773
0.752
0.728
0.699

0.964
0.954
0.942
0.928
0.918
0.991
0.985
0.983
0.983
0.978

0.687
0.670
0.635
0.615
0.577
0.866
0.846
0.818
0.799
0.772

0.608
0.599
0.571
0.546
0.507
0.803
0.788
0.767
0.744
0.723

0.705
0.392
0.161
0.089
0.061
0.912
0.728
0.408
0.166
0.073

LD,

0.586
0.259
0.107
0.064
0.049
0.891
0.627
0.278
0.110
0.060

LD,. HCL, HCL, YZS
Results for Example 2.5.3(a)

0.946
0.914
0.840
0.727
0.539
0.988
0.974
0.954
0.917
0.839

0.970
0.960
0.950
0.938
0.929
0.993
0.988
0.987
0.986
0.983

0.966
0.956
0.943
0.931
0.916
0.992
0.987
0.985
0.985
0.980

Results for Example 2.5.3(b)

0.244
0.131
0.082
0.065
0.057
0.423
0.248
0.128
0.074
0.051

0.167
0.091
0.062
0.054
0.048
0.343
0.170
0.088
0.059
0.045

0.623
0.555
0.444
0.333
0.218
0.825
0.753
0.670
0.571
0.450

0.623
0.607
0.578
0.549
0.517
0.810
0.784
0.757
0.743
0.713

0.553
0.540
0.502
0.471
0.431
0.767
0.732
0.714
0.689
0.654

Results for Example 2.5.3(c)

0.209
0.109
0.069
0.068
0.055
0.396
0.219
0.101
0.070
0.052

0.137
0.072
0.055
0.059
0.049
0.302
0.143
0.072
0.054
0.048

0.541
0.464
0.364
0.256
0.164
0.750
0.681
0.596
0.499
0.360

0.582
0.580
0.539
0.516
0.487
0.785
0.768
0.750
0.730
0.699

0.513
0.502
0.455
0.421
0.370
0.753
0.732
0.711
0.689
0.646

0.555
0.252
0.109
0.064
0.051
0.871
0.579
0.255
0.111
0.058

0.277
0.131
0.080
0.060
0.052
0.577
0.287
0.129
0.065
0.053

0.111
0.071
0.056
0.053
0.055
0.238
0.113
0.063
0.058
0.044

SC

0.624
0.283
0.115
0.073
0.051
0.906
0.650
0.299
0.115
0.063

0.260
0.125
0.075
0.061
0.051
0.550
0.273
0.128
0.064
0.051

0.106
0.064
0.051
0.058
0.049
0.211
0.100
0.059
0.057
0.051

CJ

0.973
0.962
0.950
0.941
0.931
0.993
0.989
0.988
0.989
0.986

0.786
0.758
0.714
0.678
0.638
0.928
0.912
0.891
0.875
0.852

0.365
0.344
0.311
0.277
0.238
0.606
0.570
0.543
0.513
0.473
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Table 2.6: Empirical powers of the eleven competing tests in Example 2.5.4

n p DHSp DHSp DHS,. LD,

100 50
100
200
400
800
200 50
100
200
400
800

100 50
100
200
400
800
200 50
100
200
400
800

100 50
100
200
400
800
200 50
100
200
400
800

0.102
0.104
0.096
0.104
0.095
0.104
0.073
0.085
0.075
0.067

0.130
0.110
0.099
0.110
0.098
0.116
0.098
0.063
0.070
0.081

0.157
0.124
0.115
0.112
0.101
0.120
0.107
0.096
0.077
0.090

0.068
0.056
0.035
0.040
0.018
0.080
0.052
0.061
0.040
0.036

0.078
0.056
0.046
0.030
0.020
0.094
0.072
0.040
0.048
0.036

0.102
0.067
0.051
0.034
0.030
0.100
0.082
0.062
0.042
0.043

0.074
0.066
0.048
0.050
0.032
0.086
0.059
0.064
0.049
0.044

0.086
0.062
0.060
0.041
0.033
0.098
0.076
0.042
0.055
0.046

0.116
0.082
0.059
0.046
0.039
0.098
0.085
0.072
0.046
0.054

0.532
0.578
0.583
0.542
0.570
0.564
0.590
0.594
0.604
0.586

LD,

0.524
0.560
0.565
0.534
0.552
0.544
0.580
0.585
0.591
0.573

LD,. HCL, HCL, YZS
Results for Example 2.5.4(a)

0.350
0.361
0.343
0.320
0.344
0.357
0.357
0.336
0.332
0.320

0.062
0.052
0.037
0.038
0.027
0.081
0.054
0.052
0.038
0.034

0.046
0.036
0.022
0.018
0.007
0.072
0.043
0.040
0.028
0.027

Results for Example 2.5.4(b)

0.792
0.808
0.810
0.808
0.816
0.802
0.827
0.848
0.834
0.866

0.782
0.800
0.800
0.797
0.804
0.801
0.822
0.840
0.829
0.862

0.554
0.584
0.553
0.587
0.579
0.546
0.571
0.570
0.578
0.560

0.076
0.052
0.042
0.034
0.023
0.103
0.075
0.036
0.042
0.041

0.064
0.035
0.026
0.014
0.008
0.084
0.062
0.030
0.032
0.028

Results for Example 2.5.4(c)

0.904
0.914
0.918
0.930
0.927
0.935
0.941
0.962
0.964
0.956

0.900
0.909
0.913
0.926
0.924
0.932
0.939
0.960
0.962
0.956

0.731
0.738
0.748
0.738
0.744
0.740
0.740
0.768
0.792
0.776

0.093
0.058
0.046
0.038
0.029
0.110
0.072
0.064
0.037
0.044

0.069
0.036
0.028
0.017
0.012
0.098
0.066
0.048
0.028
0.028

0.474
0.492
0.488
0.471
0.487
0.478
0.509
0.488
0.498
0.488

0.722
0.746
0.738
0.738
0.745
0.718
0.768
0.764
0.752
0.788

0.864
0.878
0.880
0.888
0.879
0.894
0.892
0.930
0.930
0.922

SC

0.578
0.620
0.620
0.610
0.620
0.614
0.654
0.652
0.668
0.640

0.836
0.848
0.850
0.854
0.872
0.858
0.878
0.888
0.883
0.907

0.926
0.943
0.947
0.954
0.946
0.952
0.960
0.976
0.978
0.980

CJ

0.042
0.033
0.018
0.012
0.005
0.068
0.052
0.040
0.024
0.026

0.055
0.032
0.021
0.012
0.006
0.098
0.058
0.030
0.030
0.030

0.076
0.042
0.018
0.009
0.012
0.118
0.065
0.046
0.024
0.016
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shown explicitly in the following proposition.

Proposition 2.5.1. Under the independence hypothesis Hy, for each (n,p), we have with
probability at least 1 — 2/M? that

sup
a€l0,1]

log M> 1/2
i .

P [S > @a,n,p;M‘{X(t)}i\il] - {1 - F\n,p;M(@a,n,p;M)H < (

Table A.1 in the supplement gives the sizes and powers of the proposed tests with
simulation-based critical values (M = 5,000). The table shows results only for Exam-
ples 2.5.1, 2.5.3, and 2.5.4 as the simulated powers under Example 2.5.2 were all perfectly
one. It can be observed that all sizes are now well controlled, with powers of the proposed
tests only slightly different from the ones without using simulation. An alternative to the
simulation-based approach would be a permutation-based approach, but we find simula-
tion based on the pivotal null distribution simpler to analyze and with the advantage that

approximation errors can be made arbitrarily small via larger Monte Carlo samples.

2.6 Discussion

2.6.1 Discussion of Assumption 2.2.1

Assumption 2.2.1 plays a key role in our analysis. It synthesizes crucial properties satisfied
by the three rank correlation statistics from Examples 2.2.1-2.2.3.

From a more general perspective, one might ask whether there is an exact relation be-
tween Assumption 2.2.1 and the properties of I- and D-consistency summarized in Weihs
et al. (2018). As a matter of fact, to our knowledge, most existing test statistics (includ-
ing rank-based, distance covariance-based, and kernel-based ones) that permit consistent
assessment of pairwise independence are asymptotically equivalent to U-statistics with the
corresponding kernels degenerate under the null, which echoes Assumption 2.1(ii). The only

exception is a new rank correlation measure that was just proposed (Chatterjee, 2021), whose
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limiting distribution is normal. Its analysis uses the permutation theory and, in particular,
is not based on the U-statistic framework. Assumption 2.1(iii), on the other hand, is much
more specific and related to the particular properties of rank-based consistent tests. This

assumption, however, is key to the establishment of Theorem 2.4.2.

2.6.2 Discussion of T

In this section we give new perspectives on Bergsma—Dassios—Yanagimoto’s correlation mea-
sure 7 := Eh,«, introduced in Example 2.2.3. Hoeffding (1948) stated a problem about the
relationship between equiprobable rankings and independence that was solved by Yanagi-
moto (1970). In the proof of his Proposition 9, Yanagimoto (1970) presented a correlation
measure that is proportional to 7* of Bergsma—Dassios if the pair is absolutely continuous.

£

Accordingly, we term the correlation “Bergsma—Dassios—Yanagimoto’s 7*”. Yanagimoto’s key
relation gives rise to an interesting identity between Hoeffding’s D, Blum—Kiefer-Rosenblatt’s
R, and Bergsma—Dassios—Yanagimoto’s 7* statistics. This identity appears to be unknown
in the literature. In detail, if z;,..., z¢ € R? have no tie among their first and their second

entries, respectively, then

6 —1
3 (5) Z hD(zil?"'azis) +2hR(z17"'az6) (2.6.1)

1<i1 <-<i5<6
6\ !
= <4) Z h7*<zi17"'7zi4>'
1<i1 <+ <i4<6
Equation (2.6.1) can be easily verified by calculating all 6! entrywise permutations of {1, 2, .. .,
6}, but may be false when ties exist. Using the identity, we can make a step towards proving
the conjecture raised in Bergsma and Dassios (2014), that is, for an arbitrary random pair

(Z1,Z5)" € R?, do we have Eh,~ > 0 with equality if and only if Z; and Z, are independent?

Theorem 2.6.1. For any random vector Z = (Zy,7Z:)" € R? with continuous marginal

distributions, we have Eh,« > 0 and the equality holds if and only if Z1 is independent of Zs.
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Similarly, a monotonicity property of Ehp and Ehg proved by Yanagimoto (1970, Sec. 2)

extends to Eh,«. We state the Gaussian version of this property.

Theorem 2.6.2. If Z = (Z,,Z,)" € R? is bivariate Gaussian with (Pearson) correlation p,

then Ehp and Ehg and, thus, also Eh.« are increasing functions of |p|.

Theorem 2.6.1 complements the results in Theorem 1 in Bergsma and Dassios (2014) to
include random vectors with continuous margins and a bivariate joint distribution that is
continuous (implied by marginal continuity) but need not be absolutely continuous. Such an
example of distribution on R? that has continuous margins but is not absolutely continuous
has been constructed in Remark 1 in Yanagimoto (1970), where it is used to illustrate an
inconsistency problem about Hoeffding’s D. A simpler example is the uniform distribution
on the unit circle in R?. For this, we revisit a comment of Weihs et al. (2018) who noted that
based on existing literature “it is not guaranteed that Eh,~ > 0 when (X,Y)T is generated
uniformly on the unit circle in R2.” We are able to calculate the values of D and R for this

example and, thus, can deduce the value of 7*.

Proposition 2.6.1. For (X,Y)" following the uniform distribution on the unit circle in R?,

we have Ehp = Ehg = Eh = 1/16.
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Chapter 3

ON UNIVERSALLY CONSISTENT AND FULLY
DISTRIBUTION-FREE RANK TESTS OF VECTOR
INDEPENDENCE

3.1 Introduction

Quantifying the dependence between two variables and testing for their independence are
among the oldest and most fundamental problems of statistical inference. The (marginal)
distributions of the two variables under study, in that context, typically play the role of
nuisances, and the need for a nonparametric approach naturally leads, when they are uni-
variate, to distribution-free methods based on their ranks. This paper is dealing with the

multivariate extension of that approach.

3.1.1 Measuring vector dependence and testing independence

Consider two absolutely continuous random vectors X; and X5, with values in R and R%,
respectively. The problems of measuring the dependence between X; and X, and testing
their independence when d; = dy = 1 (call this the univariate case) have a long history that
goes back more than a century (Pearson, 1895; Spearman, 1904). The same problem when d;
and dy are possibly unequal and larger than one (the multivariate case) is of equal practical
interest but considerably more challenging. Following early attempts (Wilks, 1935), a large
literature has emerged, with renewed interest in recent years.

When the marginal distributions of X; and X, are unspecified and d; = dy = 1, rank
correlations provide a natural and appealing nonparametric approach to testing for indepen-

dence, as initiated in the work of Spearman (1904) and Kendall (1938); cf. Chapter I11.6
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in Hajek and Sidak (1967). On one hand, ranks yield distribution-free tests because, under
the null hypothesis of independence, their distributions do not depend on the unspecified
marginal distributions. On the other hand, they can be designed (Hoeffding, 1948; Blum
et al., 1961; Bergsma and Dassios, 2014; Yanagimoto, 1970) to consistently estimate depen-
dence measures that vanish if and only if independence holds, and so detect any type of
dependence—something Spearman and Kendall’s rank correlations cannot.

New subtleties arise, however, when attempting to extend the rank-based approach to
the multivariate case. While dj ranks can be constructed separately for each coordinate
of X, k = 1,2, their joint distribution depends on the distribution of the underlying X,
preventing distribution-freeness of the (d; +dz)-tuple of ranks. As a consequence, the existing
tests of multivariate independence based on componentwise ranks (e.g., Puri et al., 1970)
are not distribution-free, which has both computational implications (e.g., through a need

for permutation analysis) and statistical implications (as we shall detail soon).

3.1.2  Desirable properties

In this paper, we develop a general framework for multivariate analogues of popular rank-
based measures of dependence for the univariate case. Our objective is to achieve the fol-

lowing five desirable properties.

(1) Full distribution-freeness. Many statistical tests exploit asymptotic distribution-
freeness for computationally efficient distributional approximations yielding pointwise asymp-
totic control of their size. This is the case, for instance, with Hallin and Paindaveine
(2002¢,b,a, 2008) due to estimation of a scatter matrix, or with Taskinen et al. (2003, 2004),
Taskinen et al. (2005). Pointwise asymptotics yield, for any given significance level « € (0, 1),
a sequence of tests ¢£Yn) indexed by the sample size n such that lim,,_,., Ep| 2:"‘)] = « for every
distribution P from a class P of null distributions. Generally, however, the size fails to be

controlled in a uniform sense, that is, it does not hold that lim, . suppep Ep [gb&n)] < a,
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which may explain poor finite-sample properties (see, e.g., Le Cam and Yang, 2000; Leeb
and Potscher, 2008; Belloni et al., 2014). While uniform inferential validity is impossible to
achieve for some problems, e.g., when testing for conditional independence (Shah and Peters,
2020; Azadkia and Chatterjee, 2021), we shall see that it is achievable for testing (uncondi-
tional) multivariate independence. Indeed, for fully distribution-free tests, as obtained from

our rank-based approach, pointwise validity automatically implies uniform validity.

(2) Transformation invariance. A dependence measure p is said to be invariant under

orthogonal transformations, shifts, and global rescaling if
(X1, Xo) = p(vr + 0101 X1, 03 + 620, X5)

for any scalars a; > 0, vectors v, € R%, and orthogonal dj, x dj, matrices Oy, k = 1,2. This
invariance, here simply termed “transformation invariance”; is a natural requirement in cases
where the components of X, X5 do not have specific meanings and observations could have
been recorded in another coordinate system. Such invariance is of considerable interest in
multivariate statistics (see, e.g., Gieser and Randles, 1997; Taskinen et al., 2003, 2005; Oja
et al., 2016).

(3) Consistency. Weihs et al. (2018) call a dependence measure p I-consistent within a
family of distributions P if independence between X; and X, with joint distribution in P
implies (X1, X5) = 0. If u(Xy, X5) = 0 implies independence of X; and X, (i.e., depen-
dence of X and X, implies u(X, X3) # 0), then p is D-consistent within P. Note that
the measures considered in this paper do not necessarily take maximal value 1 if and only if
one random vector is a measurable function of the other. While any reasonable dependence
measure should be I-consistent, prominent examples (Pearson’s correlation, Spearman’s p,
Kendall’s 7) fail to be D-consistent. If a dependence measure p is I- and D-consistent,
then the consistency of tests based on an estimator ™ of i is guaranteed by the (strong or

weak) consistency of that estimator. Dependence measures that are both I- and D-consistent
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(within a large nonparametric family) serve an important purpose as they are able to capture
nonlinear dependences. Well-known I- and D-consistent measures for the univariate case in-
clude Hoeffding’s D (Hoeffding, 1948), Blum-Kiefer-Rosenblatt’s R (Blum et al., 1961), and
Bergsma—Dassios—Yanagimoto’s 7* (Bergsma and Dassios, 2014; Yanagimoto, 1970; Drton
et al., 2020). Multivariate extensions have been proposed, e.g., in Gretton et al. (2005¢),
Székely et al. (2007), Heller et al. (2012), Heller et al. (2013), Heller and Heller (2016a), Zhu
et al. (2017), Weihs et al. (2018), Kim et al. (2020b), Deb and Sen (2021), Shi et al. (2021a),
Berrett et al. (2021).

(4) Statistical efficiency. Once its size is controlled, the performance of a test may be
evaluated through its power against local alternatives. For the proposed tests, our focus
is on quadratic mean differentiable alternatives (Lehmann and Romano, 2005, Sec. 12.2),
which form a popular class for conducting local power analyses; for related recent examples
see Bhattacharya (2019, Section 3) and Cao and Bickel (2020, Section 4.4). Our results then

show the nontrivial local power of our tests in n~'/? neighborhoods within this class.

(5) Computational efficiency. Statistical properties aside, modern applications require
the evaluation of a dependence measure and the corresponding test to be as computationally

efficient as possible. We thus prioritize measures leading to low computational complexity.

The main challenge, with this list of five properties, lies in combining the full distribution-
freeness from property (1) with properties (2)—(5). The solution, as we shall see, involves an

adequate multivariate extension of the univariate concepts of ranks and signs.

3.1.8  Contribution of this paper

This paper proposes a class of dependence measures and tests that achieve the five properties
from Section 3.1.2 by leveraging the recently introduced multivariate center-outward ranks

and signs (Chernozhukov et al., 2017; Hallin, 2017); see Hallin et al. (2021a) for a complete
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account. In contrast to earlier related concepts such as componentwise ranks (Puri and Sen,
1971), spatial ranks (Oja, 2010; Han and Liu, 2018), depth-based ranks (Liu and Singh, 1993;
Zuo and He, 2006), and pseudo-Mahalanobis ranks and signs (Hallin and Paindaveine, 2002c¢),
the new concept yields statistics that enjoy full distribution-freeness (in finite samples and,
thus, asymptotically) as soon as the underlying probability measure is Lebesgue-absolutely
continuous. This allows for a general multivariate strategy, in which the observations are
replaced by functions of their center-outward ranks and signs when forming dependence
measures and corresponding test statistics. This is also the idea put forth in Shi et al.
(2021a) and, in a slightly different way, in Deb and Sen (2021), where the focus is on distance

covariance between center-outward ranks and signs.

Methodologically, we are generalizing this approach in two important ways. First, we in-
troduce a class of generalized symmetric covariances (GSCs) along with their center-outward
rank versions, of which the distance covariance concepts from Deb and Sen (2021) and Shi
et al. (2021a) are but particular cases. Second, we show how considerable additional flexibil-
ity and power results from incorporating score functions in the definition. Our simulations

in Section 3.5.4 exemplify the benefits of this “score-based” approach.

From a theoretical point of view, we offer a new approach to asymptotic theory for the
proposed rank-based statistics. Indeed, handling this general class with the methods of Shi
et al. (2021a) or Deb and Sen (2021) would be highly nontrivial. Moreover, these methods
would not provide any insights into local power—an issue receiving much attention also in
other contexts (Hallin et al., 2021b; Beirlant et al., 2020; Hallin et al., 2021c, 2020). We thus
develop a completely different method, based on a general asymptotic representation result
applicable to all center-outward rank-based GSCs under the null hypothesis of independence
and contiguous alternatives of dependence. Our result (Theorem 3.5.1) is a multivariate
extension of Hajek’s classical asymptotic representation for univariate linear rank statistics

(Hajek and Sidak, 1967) and also simplifies the derivation of limiting null distributions.
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Combined with a nontrivial use of Le Cam’s third lemma in a context of non-Gaussian limits,
our approach allows for the first local power results in the area; the statistical efficiency of the
tests of Deb and Sen (2021) and Shi et al. (2021a) follows as a special case. In Proposition
3.4.2, we establish the strong consistency of our rank-based tests against any fixed alternative
under a regularity condition on the score function. Thanks to a recent result by Deb et al.
(2021), that assumption can be relaxed: our tests, thus, enjoy universal consistency against

fixed dependence alternatives.

Outline of the paper The paper begins with a review of important dependence measures
from the literature (Section 3.2). Generalizing the idea of symmetric rank covariances put
forth in Weihs et al. (2018), we show that a single formula unifies them all; we term the con-
cept generalized symmetric covariance (GSC). As further background, Section 3.3 introduces
the notion of center-outward ranks and signs. Section 3.4 presents our streamlined approach
of defining multivariate dependence measures, along with sample counterparts, and high-
lights some of their basic properties. Section 3.5 treats tests of independence and develops
a theory of asymptotic representation for center-outward rank-based GSCs (Section 3.5.1)
as well as the local power analysis of the corresponding tests against classes of quadratic
mean differentiable alternatives (Section 3.5.2). Specific alternatives are exemplified in Sec-
tion 3.5.3, and benefits of choosing standard score functions (such as normal scores) are

illustrated in the numerical study in Section 3.5.4. All proofs are deferred to the appendix.

Notation For integer m > 1, put [m] := {1,2,...,m}, and let &,, be the symmetric
group, i.e., the group of all permutations of [m]. We write sgn(o) for the sign of 0 € G,,.

In the sequel, the subgroup

H™ = ((14),(23)) = {(1),(14),(23),(14(23)} C & (3.1.1)
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will play an important role. Here, we have made use of the cycle notation (omitting 1-cycles)

so that, e.g., (1) denotes the identity permutation and

123456 - m 123456 - m
(14)= o (14)(23) = :
423156 - m 432156 - m

where the right-hand sides are in classical two-line notation listing o (i) below i, i € [m].

A set with distinct elements z1, ..., z, is written either as {z1,...,x,} or {x;},. The
corresponding sequence is denoted by [z1,...,x,] or [z;]",. An arrangement of {z;}! , is
a sequence [T, ()i, where 0 € &,,. An r-arrangement is a sequence [z, (;]i_; for r € [n].

Write I for the family of all (n), :=n!/(n — r)! possible r-arrangements of [n].

The set of nonnegative reals is denoted R, and 04 stands for the origin in R?. For two
vectors u,v € R?, we write u < v if u, < v, for all £ € [d], and w A v otherwise. Let
Arc(u,v) := (2r) tarccos{u"v/(|Jull||v])} if w, v # 04; Arc(u, v) := 0 otherwise. Here, ||- ||
stands for the Euclidean norm. For vectors vy, ..., v, we use (vq,...,v;) as a shorthand
for (v ,...,v])7. We write I; for the d x d identity matrix. For a function f: X — R, we
define ||f||s := maxgex |f(z)]. The symbols |-] and 1(-) stand for the floor and indicator

functions.

The cumulative distribution function and the probability distribution of a real-valued
random variable/vector Z are denoted as Fz(-) and Pz, respectively. The class of probability
measures on R that are absolutely continuous (with respect to the Lebesgue measure) is
denoted as P3°. We use ~» and ~ to denote convergence in distribution and almost sure
convergence, respectively. For any symmetric kernel i(-) on (R?)™, any integer ¢ € [m],
and any probability measure Pz, we write hy(2; ..., 2 Pz) for ER(zy ..., 20, Zpi1, ..., Zyy)
where Z,,...,Z,, are m independent copies of Z ~ Pz, and Eh := Eh(Z;,...,Z,,). The

product measure of two distributions P; and P, is denoted P; ® Ps.
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3.2 Generalized symmetric covariances

Let X; and X, be two random vectors with values in R* and R, respectively, and assume
throughout this paper that they are both absolutely continuous with respect to the Lebesgue
measure. Weihs et al. (2018, Def. 3) introduced a general approach to defining rank-based
measures of dependence via signed sums of indicator functions that are acted upon by sub-
groups of the symmetric group. In this section, we highlight that their resulting family of
symmetric rank covariances can be extended to cover a much wider range of dependence
measures including, in particular, the celebrated distance covariance (Székely et al., 2007).
This enables us to handle a broad family of dependence measures in the following common

standard form.

Definition 3.2.1 (Generalized symmetric covariance). A measure of dependence p is said
to be an m-th order generalized symmetric covariance (GSC) if there exist two kernel func-
tions fi : (R®)™ — R and fo : (R®)™ — Rsg, and a subgroup H C &,, containing an

equal number of even and odd permutations such that

M(Xla X2) = Nflny,H(X]«? XQ) = E[kf17f27H((X117 X21)7 O (le’ XQm))]

Here (X11, X21), ..., (X1m, Xom) are m independent copies of (X7, X5), and the dependence

kernel function ky, f, u(-) is defined as

kf17f2,H<(w117 1521), R (wlmu w2m))

{ngn V1 (T1o(1)s - - -5 Bio(m)) }{ngn ) fo(®20(1), - .,wQU(m))}. (3.2.1)

oc€H ceH
As the group H is required to have equal numbers of even and odd permutations, the order
of a GSC satisfies m > 2. This requirement also justifies the term “generalized covariance”

through the following property; compare Weihs et al. (2018, Prop. 2).
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Proposition 3.2.1. All GSCs are I-consistent. More precisely, the GSC puy, f, n( X1, X2)
is I-consistent in the family of distributions such that E[fy] = E[fe(Xk1, ..., Xim)] < 00,

k=1,2, where X1, ..., Xpm are m independent copies of Xj.

The concept of GSC unifies a surprisingly large number of well-known dependence mea-
sures. We consider here five noteworthy examples, namely, the distance covariance of Székely
et al. (2007) and Székely and Rizzo (2013), the multivariate version of Hoeffding’s D based
on marginal ordering (Weihs et al., 2018, Section 2.2, p. 549), and the projection-averaging
extensions of Hoeffding’s D (Zhu et al., 2017), of Blum-Kiefer-Rosenblatt’s R (Kim et al.,
2020c¢, Proposition D.5), and of Bergsma—Dassios—Yanagimoto’s 7% (Kim et al., 2020b, The-
orem. 7.2). Only one type of subgroup, namely, H" := ((1 4),(2 3)) C &,,, for m > 4 is
needed; recall (3.1.1). For simplicity, we write w = (wy,...,w,,) — fi(w) for the kernel
functions of an mth order multivariate GSC for which the dimension of wy, £ = 1,...,m,
is di, hence may differ for £ = 1 and £ = 2. Not all components of w need to have

an impact on fi(w). For instance, the kernels of distance covariance, a 4th order GSC,

map w = (wy, ..., wy) to R but depend neither on w; nor wy.

Example 3.2.1 (Examples of multivariate GSCs).

(a) Distance covariance is a 4th order GSC with H = HZ and
dCov 1 di\4
i (w) = gllwr—wf| on (R™)", k=12
Indeed, with c; := 7(*9/2/T((1 + d)/2), we have

/lfiiCovhféiCov’Hf(Xl,XQ)
1
= ZE[(HXH — Xpof| = [| X101 — Xus|| = | X14 — Xao| + || X104 — X3

X (| Xo1 — Xoo| — || X1 — Xos|| — || X4 — Xoof| + || Xos — Xos]|)]

1 / lox,x0) (B1,t2) — @x, (t1)0x, (E2)]?
RA1 xRz [[£1 |41 ||Eo || 2211

dt,dt,. (3.2.2)
Cd1 Cd2
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Identity (3.2.2) was established in Székely et al. (2007, Remark 3), Székely and Rizzo
(2009, Thm. 8), and Bergsma and Dassios (2014, Sec. 3.4);

(b) Hoeffding’s multivariate marginal ordering D is a 5th order GSC with H = H? and
1
M (w) = 5]1(’(1)1,’(1]2 <ws) on (R™)° k=12,
since, by Weihs et al. (2018, Prop. 1),

“f{”,fgf,Hf(XbXﬁ:/ {F(Xl,Xz)(ulaUz)—FX1(Ul)FXQ(uz)}QdF(Xl,Xz)(ubUQ);

R71 xR92
(c) Hoeffding’s multivariate projection-averaging D is a 5th order GSC with H = H? and

1
fP(w) = §Arc(w1 — w5, wy —w;) on (R%)’ k=12

Indeed, by Zhu et al. (2017, Equation (3)), we have

Sd1,1X5d2,1 R2

— Forx, (1) Foag x, (u2) FAF 07 x, 0 x5 (U1, u2)dAa, (@1)d g, (@2),

with Ay the uniform measure on the unit sphere Sy_1;

(d) Blum—Kiefer—Rosenblatt’s multivariate projection-averaging R is a 6th order GSC
with H = H% and

1
flR(w) = §Arc(w1 — w;, Wy — w;) on (Rdl)G,

1
fQR('w) = §Arc(w1 — Wwg, Wy — Wg) on (leQ)G;

this follows from Kim et al. (2020c, Prop. D.5), who showed

“flR,fé*,HS(XhXﬂ = / {F(afxl,a;)g)(ul,uz)

Sdy—1X8dy—1 JR?
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—Farx, (1) Foy x, (u2) Y dF o7 x, (w1)dFog x, (u)dNg, (0)d Mg, (a);

(e) Bergsma—Dassios—Yanagimoto’s multivariate projection-averaging 7* is a 4th order

GSC with H = H? and
T (w) = Arc(w) — wy, wy — ws) + Arc(wy — wy, w; —wy) on (R%)* k=12,
since, by Kim et al. (2020b, Theorem 7.2), we have

Mg pr* H4(X17X2) = E{asign(OtlTXn,OflTX127041TX137041TX14)
.05 Hi

Say—1X8dy-1

X asign(a;—X217 OﬂgTX22, OégTX237 OégTX24)}d/\d1 (eu)dAg, (),
With agign (w1, we, w3, wy) = sign(|wy — wa| — |wy — ws| — |wy — wa| + |wy — ws)).

Remark 3.2.1. Sejdinovic et al. (2013) recognize distance covariance as an example of
an HSIC-type statistic (Gretton et al., 2005¢,a,b; Fukumizu et al., 2007). The HSIC-type
statistics are all 4th order multivariate GSCs, and we note that our results for distance

covariance readily extend to other HSIC-type statistics.

Remark 3.2.2. In the univariate case, the GSCs from Example 3.2.1(b)—(e) reduce to the D
of Hoeffding (1948), R of Blum et al. (1961), and 7* of Bergsma and Dassios (2014), respec-
tively. As shown by Drton et al. (2020), the latter is connected to the work of Yanagimoto
(1970). In Appendix B.2.1, we simplify the kernels for the univariate case, and show that
the GSC framework also covers the 7 of Kendall (1938).

All the multivariate dependence measures we have introduced are D-consistent, albeit
with some variations in the families of distributions for which this holds; see, e.g., the discus-
sions in Examples 2.1-2.3 of Drton et al. (2020). As these dependence measures all involve

the group H!", we highlight the following fact.

*
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Lemma 3.2.1. A GSC i = py, .5 with m > 4 is D-consistent in a family P if and only
if the pair (f1, f2) is D-consistent in P—namely, if and only if

2

E [ H {fk(th Xk27 Xk37 Xk47 Xk57 s 7ka) - fk(Xkla Xk?n Xk27 Xk47 Xk57 I 7ka)

k=1

— [ ( Xa, Xz, Xia, X1, Xis, - -« Xiom) + [o(Xia, Xz, Xz, X1, Xis, - - - >ka)H

15 finite, nonnegative, and equal to 0 only if X, and Xy are independent.

Theorem 3.2.1. All the multivariate GSCs in Fxample 3.2.1 are D-consistent within the
family {P € P31C+d2’ Ep[fe(Xk1, - Xim)] < 00, k= 1,2} (with fr, k = 1,2 denoting their

respective kernels).

The invariance/equivariance properties of GSCs depend on those of their kernels. We
say that a kernel function f : (R?)™ — R is orthogonally invariant if, for any orthogonal

matrix O € R™? and any wy, ..., w,, € (R)™, f(wy,...,w,) = f(Ow,...,0w,,).

Lemma 3.2.2. If f; and fy both are orthogonally invariant, then any GSC of the form p =
L .1 1S orthogonally invariant, i.e., p(Xq, Xo) = n(01X:, 02 X5) for any pair of random

vectors (X1, X3) and orthogonal matrices O € R1*% and O, € Ré2*%,

Proposition 3.2.2. The kernels (a),(c)-(e) in Ezxample 3.2.1, hence the corresponding

GSCs, are orthogonally invariant.

Turning from theoretical dependence measures to their empirical counterparts, it is clear
that any GSC admits a natural unbiased estimator in the form of a U-statistic, which we

call the sample generalized symmetric covariance (SGSC).

Definition 3.2.2 (Sample generalized symmetric covariance). The sample generalized sym-

metric covariance of = puy, s, g is A = 0 ([(21i, 2:)]7y; f1, f2, H), of the form

-1
~(n n -
= (m) Z kfl,fz,H((wlmwzn)’ ey (wum,w%m))a

11 <t <<t
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where ky, f, i is the “symmetrized” version of ky, f, i

- m 1 m
kf17f27H<[(m1f7m25)]g:1> = % Z kf17f27H<[(m10(5)7m20(€)]£:1>'

P

If the kernels f; and fy are orthogonally invariant, then it also holds that all SGSCs of
the form ™ ( - ; f1, fo, H) are orthogonally invariant, in the sense of remaining unaffected
when the input [(@1;, ©2)]7, is transformed into [(Ojxy;, Ooxs;)|, where O; € Réxh
and O, € R%*% are arbitrary orthogonal matrices. Proposition 3.2.2 thus also implies the

orthogonal invariance of SGSCs associated with kernels (a) and (c)—(e) in Example 3.2.1.

The SGSCs associated with the examples listed in Example 3.2.1, unfortunately, all fail to
satisfy the crucial property of distribution-freeness. However, as we will show in Section 3.4,
distribution-freeness, along with transformation invariance, can be obtained by computing

SGSCs from (functions of) the center-outward ranks and signs of the observations.
3.3 Center-outward ranks and signs

This section briefly introduces the concepts of center-outward ranks and signs to be used
in the sequel. The main purpose is to fix notation and terminology; for a comprehensive
coverage, we refer to Hallin et al. (2021a).

We are concerned with defining multivariate ranks for a sample of d-dimensional observa-
tions drawn from a distribution in the class P3¢ of absolutely continuous probability measures
on R? with d > 2. Let Sy and S;_; denote the open unit ball and the unit sphere in RY,
respectively. Denote by Uy the spherical uniform measure on Sy, that is, the product of the
uniform measures on [0,1) (for the distance to the origin) and on S;—; (for the direction).

The push-forward of a measure Q by a measurable transformation 7" is denoted as THQ).

Definition 3.3.1 (Center-outward distribution function). The center-outward distribution

function of a probability measure P € P3¢ is the P-a.s. unique function F, that (i) maps R?
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to the open unit ball Sy, (ii) is the gradient of a convex function on R¢, and (iii) pushes P

forward to Uy (i.e., such that F P = Uy).

The center-outward distribution function F, of P entirely characterizes P provided that
P € Pj% cf. Hallin et al. (2021a, Prop. 2.1(iii)). Also, F. is invariant under shift, global
rescaling, and orthogonal transformations. We refer the readers to Appendix B.2.2 for details
about these elementary properties of center-outward distribution functions.

The sample counterpart Fin) of F. is based on an n-tuple of data points z, ..., 2z, € R%
The key idea is to construct n grid points in the unit ball S; such that the corresponding
discrete uniform distribution converges weakly to U, as n — oo. For d > 2, the construction

proposed in Hallin (2017, Sec. 4.2) starts by factorizing n into
n = ngng + no, nr,Ns € Z,, 0 < ng < min{ng,ns},

where in asymptotic scenarios nr and ng — oo, hence ng/n — 0, as n — oo. Next consider

the intersection points between

— the ng hyperspheres centered at 0,4, with radii r/(ng + 1), r € [ng], and

— ng rays given by distinct unit vectors {.sg"S )}se[[ns]] that divide the unit circle into arcs
of equal length 27 /ng for d = 2, and are distributed as regularly as possible on the
unit sphere Sy for d > 3; asymptotic statements merely require that the discrete
uniform distribution over {s{" )};ﬁl converges weakly to the uniform distribution on
Sj_1 as ng — 0.

Letting n := (ng,ng,ng), the grid &< is defined as the set of nzng points {ﬁsgnS)}

with r € [ng] and s € [ng] as described above along with the origin 0 in case ng = 1

1

(ns) :
ST 1) 55 }, s € § where § is chosen as a random

or, whenever ng > 1, the ng points {

sample of size ng without replacement from [ng]. For d = 1, letting ng = 2, ng = |n/ng],
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no =n—ngng =0 or 1, B¢ reduces to the points {£r/(ng+ 1) : r € [ng]}, along with the
origin 0 in case ng = 1.
The empirical version Fi of F, is then defined as the optimal coupling between the

observed data points and the grid &2.

Definition 3.3.2 (Center-outward ranks and signs). Let 21, ..., z, be distinct data points
in R%. Let T be the collection of all bijective mappings between the set {z;}" , and the

grid &%= {u;}" ,. The sample center-outward distribution function is defined as

F : (3.3.1)

TeT

and (np+1)||F{ (2)|| and F(i")(zl)/HF(in)(zl)H are called the center-outward rank and center-

outward sign of z;, respectively.

Remark 3.3.1. The particular way the grid &¢ is constructed here produces center-outward
ranks and signs that enjoy all the properties — uniform distributions and mutual indepen-
dence — that are expected from ranks and signs (see Section B.2.2 of the online Appendix).
These properties, however, are not required for the finite-sample validity and asymptotic
properties of the rank-based tests we are pursuing in the subsequent sections. Any sequence

of grids &9

n’

whether stochastic (defined over a different probability space than the ob-
servations) or deterministic, is fine provided that the corresponding empirical distribution
converges to the spherical uniform Uy. In addition, for the reasons developed, e.g., in Hallin
(2021), we deliberately only consider the spherical uniform U,. In practice, the uniform dis-
tribution over the unit cube [0, 1]? could be considered as well, yielding similar tests enjoying

similar properties, with proofs following along similar lines.

The next proposition describes the Glivenko—Cantelli property of empirical center-outward

distribution functions, a result we shall heavily rely on.
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Proposition 3.3.1. (Hallin, 2017, Proposition 5.1, del Barrio et al., 2018, Theorem 3.1,
and Hallin et al., 2021a, Proposition 2.3) Consider the following classes of distributions:

e the class P of distributions P € P3¢ with nonvanishing probability density, namely,
with Lebesque density f such that, for all D > 0 there exist constants Ap,y < Ap.y €
(0,00) such that Ap.y < f(z) < Ap,s for all ||z|| < D;

e the class Pf of all distributions P € P3¢ such that, denoting by Fi”) the sample distri-

bution function computed from an n-tuple Z1, ..., Z, of independent copies of Z ~ P,
max F"(Z) —F.(Z)|| 20 asng and ng — oo. (3.3.2)

It holds that P C P¥ ¢ Py,
3.4 Rank-based dependence measures

We are now ready to present our proposed family of dependence measures based on the
notions of GSCs and center-outward ranks and signs. Throughout, (X, X5) is a pair of
random vectors with 1:))(1 € Pglc and 1:))(2 € 7)2‘;:, and (Xlly X21)7 (X127 X22), cey (X1n7 in)

is an n-tuple of independent copies of (X, X5). Let Fy. denote the center-outward distri-
(n)

1. (+) for the sample center-outward distribution function

bution function of X, and write F
corresponding to { Xy}, k= 1,2.

Our ideas build on Shi et al. (2021a) and, in slightly different form, also on Deb and
Sen (2021), where the authors introduce a multivariate dependence measure by applying
distance covariance to F; 4 (X) and Fy . (X5), with a sample counterpart involving Fg"i)(X 1)
and Fgfi)(Xgi), i € [n]. Our generalization of this particular dependence measure involves
score functions and requires further notation. The score functions are continuous functions

Ji,J2 1 [0,1) — Rsg. Classical examples include the normal or van der Waerden score

function J,aw(u) 1= (Fxgl(u))l/ ? (with Fy2 the X3 distribution function), the Wilcozon score
d



53

function Jy(u) := u, and the sign test score function J,,,(u) :=1. For k = 1,2, let J(u) :=
Je(lul)w/||u| if w € Sq,\{04, } and 0g4, if w = 04, . Define the population and sample scored
center-outward distribution functions as Gg.(-) = Jg(Fr.(-)) and G,gni() = Jk(F,(gni)()),

respectively.

Definition 3.4.1 (Rank-based dependence measures). Let J;,.Jo be two score functions.
The (scored) rank-based version of a dependence measure p is obtained by applying p to the

pair (G1.(X1),Ga.(X3)). For a GSC p = iy, 4, 1, the rank-based version is denoted

pe (X1, Xo) = pgy, o o, po, 11 (X1, Xo) = pigy g1 (G (X)), Gon (X)) (3.4.1)
and termed a rank-based GSC for short. The associated rank-based SGSC' is

W — e — ﬁ(n)<[(Gg’2(Xli),Ggfi(xgi))}j:l;fl,f2,H). (3.4.2)

(n
~ o J1,J2, 08y o, H

Remark 3.4.1. There is no immediate reason why a rank-based GSC should itself by a GSC
in the sense of Definition 3.2.1. In this context, an observation of Bergsma (2006, 2011) is
of interest. For distance covariance in the univariate case (equivalent to 4« in his notation),

Lemma 10 in Bergsma (2006) implies that

1

Telsicor sgoor s (G (X1), G (Xa)) = /(F(Xl,xg) — Fx, Fx,)*dFx,dFx,.

In other words, for d; = dy = 1 and J;(u) = J2(u) = u, the rank-based distance covariance
coincides with R of Blum et al. (1961) up to a scalar multiple. Recall that R is a GSC, but

of higher order than distance covariance; see Example B.2.1(c) in Appendix B.2.1.

Plugging the center-outward ranks and signs into the multivariate dependence measures
from Section 3.2 in combination with various score functions, one immediately obtains a
large variety of rank-based GSCs and SGSCs, as we exemplify below. In particular, the

choice fi = fiov, fo = fdCv Ji(u) = Jy(u) = u, and H = H? recovers the multi-
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variate rank-based distance covariance from Shi et al. (2021a).

Example 3.4.1. Some rank-based SGSCs.

(a) Rank-based distance covariance

W= (1) 3 o (G060, GE). .. (G, GE(X)

4
11 <-<ig

with hqcov := Effc@ fdacov g as given in Example 3.2.1(a). We have by definition that

—1
(n) n 1
WdCov - (4> E : 4 -4

i17£...Fig
{llei(Xu) - 61 (x| - |GE(Xw) - G (X))

_HGSQ(XIM) - Gﬁ(Xuz)H + HGﬁ(Xm) - Gﬁ)(Xus)H}
(G — G| ~ G2 — GE( )|

|G (Xni,) — G (Xoiy) || + || G (X i) —Géfl)(Xgig)H}];

(b) Similarly, Hoeffding’s rank-based multivariate marginal ordering D (giving W%T/})),
Hoeffding’s rank-based multivariate projection-averaging D (ng)), Blum—Kiefer—
Rosenblatt’s rank-based multivariate projection-averaging R (Wg‘)), and Bergsma—
Dassios—Yanagimoto’s rank-based multivariate projection-averaging 7* (KVSZ)) can be

defined with kernels hys := Ef]\/[ FM S5 hp = Efp P HS hg = EflﬁcJQRﬂg, and h+ =

k Fr g HS A8 given in Example 3.2.1, respectively.

Having proposed a general class of dependence measures, we now examine, for each rank-
based GSC, the five desirable properties listed in Section 3.1.2. To this end, we first introduce

two regularity conditions on the score functions.
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Definition 3.4.2. A score function J : [0,1) — R is called weakly regular if it is continuous
over [0,1) and nondegenerate: fol J?(u)du > 0. If, moreover, J is Lipschitz-continuous,

strictly monotone, and satisfies J(0) = 0, it is called strongly regular.

Proposition 3.4.1. The normal and sign test score functions are weakly but not strongly

reqular; the Wilcoxon score function is strongly regular.

Proposition 3.4.2. Suppose the considered pair (X1, Xs) has marginal distributions Px, €
Py and Px, € Pi. Consider any rank-based GSC' puy = pi g, 15 550,58 and its rank-
based SGSC I/NVL") = as defined in (3.4.1) and (3.4.2). Further, let fi. :=

~ JuJa g o H
Peidy Jo fr. o m b€ instance using the group from (3.1.1). Then,

(i) (Ezact distribution-freeness) Under independence of X, and X, the distribution of WL")

does not depend on Px, nor Px,;

(i1) (Transformation invariance) If the kernels f1 and fs are orthogonally invariant, it holds

for any orthogonal matriz O, € R**%* | any vector v, € R%, and any scalar aj, € R+

that p, (X1, Xs) = ps (’01 + a0, X1, v, + CL202X2);

(iii) (I- and D-Consistency)
(a) p is I-consistent in the family
{Px, x)| Px, € Pi and E[fi ([Gpo(Xii)]21)] < 00 for k=1,2};
(b) If the pair of kernels is D-consistent in the class
{Px,.x2) € Pi | BLfe( X1, .. Xiom)] < 00 for k=1,2}
(cf. Lemma 3.2.1), then .. is D-consistent in the family

5 dooo = {Px1,%5) € Piray| B[S ([Gra (X)) | < 00 for k =1,2}
(3.4.3)
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provided that the score functions J, and Jy are strictly monotone;

(iv) (Strong consistency) If fk([G,(C"i(XW)]anl) and [, (G (Xki,)|7%1) are almost surely
bounded, that is, if there exists a constant C' (depending on fi, Ji, and Px, ) such that
for anyn and k = 1,2,

P(1A([GIXu)] L) <€) =1=P( |l [Gru(Xu)]/) | < C).

and
(n)r_nl Z ‘fk([Gl(cni(ka)]ZLﬂ) - fk([Gkvi(inz)nL) = 0, (3.4.4)
[il ..... ’Lm]EIm
then
W,(ZZ) = WS??JQ,N,fI,fQ,H — ’ui(Xl’ XZ)' (3.4.5)

Theorem 3.4.1 (Examples). As long as Px, € ij, Px, € 733;, and Jy,Jo are strongly
reqular, all the kernel functions in Example 3.2.1(a)—(e) satisfy Condition (3.4.4).

Remark 3.4.2. Unfortunately, Theorem 3.4.1 does not imply that the rank-based SGSCs
with normal score functions satisfy (3.4.5) although, in view of Proposition 3.4.2(iii), their
population counterparts are both I- and D-consistent within a fairly large nonparametric
family of distributions. A weaker version (replacing a.s. convergence by convergence in
probability) of (3.4.5) holds in the univariate case with d; = dy = 1 by Feuerverger (1993,
Sec. 6). Consistency for normal scores, however, follows from a recent and yet unpublished
result of Deb et al. (2021, Proposition 4.3), which was not available to us at the time this

paper was written and which is obtained via a completely different technique.

We conclude this section with a discussion of computational issues. Two steps, in the eval-
uation of multivariate rank-based SGSCs, are potentially costly: (i) calculating the center-

outward ranks and signs in (3.3.1), and (ii) computing a GSC 71 (-) with n inputs. The
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optimal matching problem (3.3.1) yielding [Ggfﬂ_z(Xli)]?:l and [ngi)(XQi)]?zl can be solved
in O(n*?log(nN)) time if the costs ||z; —wu;||%, 4,5 € [n] are integers bounded by N (Gabow
and Tarjan, 1989); in dimension d = 2, this can improved to O(n*?*91log(N)) time for some
arbitrarily small constant § > 0 (Sharathkumar and Agarwal, 2012). The problem can also

be solved approximately in O(n%2Q(n, e, A)) time if d > 3, where
Q(n, e, A) := e '1(n,e)log*(n/e) log(A)

depends on n, € (the accuracy of the approximation) and A := max ¢;;/min ¢;;, with 7(n, €)
a small term (Agarwal and Sharathkumar, 2014). Further details are deferred to Ap-
pendix B.2.3.

Once [GSZZ(XM)}?:l and [Ggi(Xzi)]?:l are obtained, a naive evaluation of W™, on the
other hand, requires O(n™) operations. Great speedups are possible, however, in particular
cases such as the rank-based SGSCs from Example 3.4.1. A detailed summary is provided in
Proposition B.2.4 of the Appendix. The total computational complexity of the five statistics

in Example 3.4.1 is given in the last three rows of Table 3.1.

3.5 Local power of rank-based tests of independence

Besides quantifying the dependence between two groups of random variables, the rank-based

GSCs from Section 3.4 allow for constructing tests of the null hypothesis
Hy : X, and X, are mutually independent,

based on a sample (X711, X91),. .., (X1, Xo,) of n independent copies of (X7, X5). Shi et al.
(2021a), and, in a slightly different manner, Deb and Sen (2021), studied the particular case
of a test based on the Wilcoxon version of the rank-based distance covariance ngov. Among
other results, they derive the limiting null distribution of ngov, using combinatorial limit

theorems and “brute-force” calculation of permutation statistics. Although this led to a fairly
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general combinatorial non-central limit theorem (Shi et al., 2021a, Theorems 4.1 and 4.2),

the derivation is not intuitive and difficult to generalize. In contrast, in this paper, we take

a new and more powerful approach to the asymptotic analysis of rank-based SGSCs, which

resolves the following three main issues:

(1)

(iii)

Intuitively, the asymptotic behavior of rank-based dependence measures follows from
that of their Hajek asymptotic representations, which are oracle versions in which the
observations are transformed using the unknown actual center-outward distribution

(in) . Here, we show the correctness of

function F, rather than its sample version F
this intuition by proving asymptotic equivalence between rank-based SGSCs and their

oracle versions.

Previous work does not perform any power analysis for the new rank-based tests.
Here, we fill this gap by proving that these tests have nontrivial power in the context

of the class of quadratic mean differentiable alternatives (Lehmann and Romano, 2005,

Def. 12.2.1).

Finally, our rank-based tests allow for the incorporation of score functions, which may

improve their performance.

This novel approach rests on a generalization of the classical Hajek representation method

(Hajek and Sidak, 1967) to the multivariate setting of center-outward ranks and signs, which

simplifies the derivation of asymptotic null distributions and, via a nontrivial use of Le Cam’s

third lemma for non-normal limits, enables our local power analysis.

3.5.1 Asymptotic representation

In order to develop our multivariate asymptotic representation, we first introduce formally

the oracle counterpart to the rank-based SGSC WL").
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Definition 3.5.1 (Oracle rank-based SGSCs). The oracle version of the rank-based SGSC

() i i = '
WJZL,JQ,Ufl»fQ,H associated with the GSC SR

WD =5 = B (G () G X)L oo )

Note that the oracle W,Sn) cannot be computed from the observations as it involves the
population scored center-outward distribution functions Gy ;. and G .. However, the limiting
null distribution of W unlike that of W(”), follows from standard theory for degenerate
U-statistics (Serfling, 1980, Chap. 5.5.2). This point can be summarized as follows.

Proposition 3.5.1. Let 1 = iy, 1, 5 be a GSC with m > 4. Let the kernels fi, fo and the

score functions Ji, Jo satisfy
0< Var(gk(Wkl, Wkg)) < 00, k= 1,2, (351)

where Wy, := Ji(Uy;) with (Uy;,Us;), i € [m] independent and distributed according to the

product of spherical uniform distributions Uy, @ Ug,,
gr(wp1, wi2) == E[ka,H;n <wk17wkz27 Wiz, Wia, ..., ka)}, (3.5.2)

and fi pm = ZUGH? sgn(0) fi(Xro(1)s - - - s Tho(m)), & = 1,2. Then, under the null hypothe-
sis Hy that Xy ~ Px, € Pj’ and X, ~ Px, € P’ are independent,

n) __ (n) 2
nW/E )= nWleJQ#foQ,Hl” - Z )\,u,v(gy o 1>’

where [§,]52, are independent standard Gaussian random variables and [\, )52, are the non-

zero eigenvalues of the integral equation

E[91(’w11, Wi2) g2 (w21, Waz ) (Wi, sz)} = M) (w11, war). (3.5.3)

The tests we are considering reject for large values of test statistics that estimate a
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nonnegative (I- and D-)consistent dependence measure. In all these tests
all eigenvalues of the integral equation (3.5.3) are non-negative. (3.5.4)

However, it should be noted that, in view of the following multivariate representation result,

a valid test of Hy can be implemented also when (3.5.4) does not hold.

Theorem 3.5.1 (Multivariate Hajek representation). Let fi, fo be kernel functions of or-
der m > 4, and let Jy, Jy be weakly reqular score functions. Writing USZ) for the discrete
uniform distribution over the grid &% let W := J (U™ where (U, UMY for i € [m]
are independent with distribution UEZ) ® U((iz). Define g, k = 1,2, as in (3.5.2), and

g,i,")('wkl, wkz) =k |:2fk,H1” (wkl, W2, Wk(?ib)v Wk(z), Ce W(n)>i| s k= 1, 2. (355)

km
Assume that

fr and g are Lipschitz-continuous, g,(cn) converges uniformly to g, (3.5.6)

1
sup  E[fu([Wii,]i2,)?] < 0o, and / JE(u)du < oo, k=1,2.
‘ 0

Then, under the hypothesis Hy that X; ~ Px, € Py and Xo ~Px, € Py, are independent,
the rank-based SGSC WL”) = W&?)JQ , associated to the GSC p = pug, g, mp is asymptotically

equivalent to its oracle version W™, i.e., WEL") — W = op(n~Y) as ng,ng — o.

Theorem 3.5.2. The conclusion of Theorem 3.5.1 still holds with (3.5.6) replaced by
fr s uniformly bounded, and almost everywhere continuous, k =1,2. (3.5.7)

Proposition 3.5.2 (Examples). If X; ~ Px, € Pi° is independent of Xy ~ Px, € P
and Jy,Jo are weakly regular, then the kernel functions from Ezxample 3.2.1(b)-(e) sat-
isfy (3.5.1),(3.5.4), and (3.5.7). If, moreover, Jy, Jo are square-integrable (viz., fol J(u)du <
oo for k = 1,2), then (3.5.1), (3.5.4), and (3.5.6) hold also for the kernels in Exam-
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ple 3.2.1(a).

Corollary 3.5.1 (Limiting null distribution). Suppose the conditions in Proposition 3.5.1
and Theorem 3.5.1 hold. Then, for = piy, f, g with m > 4, under the hypothesis Hy that
X, ~Px, € Pi{ and Xy ~ Px, € Pi5 are independent,

nW(") _ nW(") - Z Mo(2—1) (3.5.8)

with [A,.]52, and [£,]52, as defined in Proposition 3.5.1.

Remark 3.5.1. Corollary 3.5.1 gives no rate, i.e., no Berry—Esséen type bound for the con-
vergence in (3.5.8). Indeed, deriving such bounds in the present context is quite challenging.
Results for the univariate case with d; = dy = 1 were established for simpler statistics
such as Spearman’s p and Kendall’s 7 by Koroljuk and Borovskich (1994, Chap. 6.2) and,
more recently, by Pinelis and Molzon (2016). Extending these results to the multivariate
measure-transportation-based ranks considered here is highly nontrivial and requires prop-
erties of empirical transports that have not yet been obtained. This pertains, in particular,
to working out the rate of convergence in the Glivenko—Cantelli result for the center-outward
distribution function given in (3.3.2); an open problem in the recent survey by Hallin (2021,

Section 5).

For any significance level a € (0, 1), define the quantile

Q1o = inf {a: ER: P(iAW(gg 1)< x) >1— a}, (3.5.9)
v=1

where [A\,,]52, and [§,]22, are as in Proposition 3.5.1. Let WL") be as in Theorem 3.5.1, and
define the test
TM .= ]l(nI/NV(") > qml,a).

The next proposition summarizes the asymptotic validity and properties of this test.
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Proposition 3.5.3 (Uniform validity and consistency). Let Jy, Jo be weakly reqular score
functions, and let jn = py, f, qm be a GSC with m > 4 such that Conditions (3.5.1) and one
of (3.5.6) and (3.5.7) hold. Then,
(i) limn%ooP(T,(f?()l = 1) = «a for any P € Py @ Py, i.e., for X1 and X, independent
with X, ~ Px, € P and X, ~ Px, € Pi;
(i) it follows from Proposition 3.4.2(i) that lim,, . SUPpepf apf P(T,(ﬁl =1)=aq;
(111) if, moreover, the pair of kernels (fi, f2) is D-consistent, Ji, Jo are strictly monotone,
and (3.4.5) holds, limy,_, P(T) = 1) = 1 for any fized alternative Px,.x2) € Pg dy.00
as defined in (3.4.3).

3.5.2  Local power analysis

In this section, we conduct local power analyses of the proposed tests for quadratic mean dif-
ferentiable classes of alternatives (Lehmann and Romano, 2005, Def. 12.2.1), for which we es-
tablish nontrivial power in n~'/2 neighborhoods. We begin with a model {gx (z; §) };5/<s+ with
6* > 0, under which X = (X1, X>) has Lebesgue-density ¢x (x;8) = q(x, x,) (@1, %2); ),
with gx, (x1;0) and ¢x,(x2;9) being the marginal densities. We then make the following

assumptions.
Assumption 3.5.1.

(i) Dependence of X1 and Xs: qx(x;9) = qx,(x1;0)qx,(@2; 0) holds if and only if 6 = 0.

(ii) The family {qs(x)}sj<s+ is quadratic mean differentiable at 6 = 0 with score func-
tion 0(-; 0), that is,

/ (\/QX(a:; ) — Vax(x;0) — %55(:0;0) ax (z; 0))2daf; =o0(6%) as 6§ = 0.

(iii) The Fisher information is positive, i.e., Tx(0) := [{f(x;0)}?qx (2, 0)dz > 0; of note,
Assumption 3.5.1(ii) implies that Ix (0) < oo and [ {(z;0)qx (2, 0)dz = 0.
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(iv) The score function £(x;0) is not additively separable, i.e., there do not exist functions hy

and hy such that (z;0) = hy (@) + ho(z,).

Remark 3.5.2. For the sake of simplicity, we have restricted ourselves to one-parameter

classes. Analogous results hold for families indexed by a multivariate parameter &.

For a local power analysis, we consider a sequence of local alternatives obtained as
Hf")(éo) :0 =6, where 6 := n~1/2, (3.5.10)

with some constant dy # 0. In this local model, testing the null hypothesis of independence

reduces to testing Hy : 09 = 0 versus Hy : g # 0.

Theorem 3.5.3 (Power analysis). Consider a GSC = py, f, qm with m > 4 and kernel
functions f1, fo picked from Ezxample 3.2.1. Assume that Jy,Jy are weakly reqular score
functions that satisfy the assumptions of Proposition 3.5.2. Then if Assumption 3.5.1 holds,
for any B > 0, there exists a constant Cz > 0 depending only on [ such that, as long
as 6] > C, lim,, o0 P{THA = 1|/H™M(6)} > 1 - 3.

Following the arguments from the proof of Theorem 3.5.3, one should be able to obtain
similar local power results for the original (non-rank-based) tests associated with the kernels
listed in Example 3.2.1. However, to the best of our knowledge, this analysis has not been
performed in the literature, except for d; = dy = 1 where results can be found, e.g., in Dhar
et al. (2016) and Shi et al. (2021b). We also emphasize that, although Theorem 3.5.3 only
considers the specific cases listed also in Example 3.4.1, the proof technique applies more
generally. We refrain, however, from stating a more general version of Theorem 3.5.3 as this
would require a number of tedious technical conditions.

Combined with the following result, Theorem 3.5.3 yields nontrivial power of the proposed
tests in n~!/2 neighborhoods of § = 0.
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Theorem 3.5.4. Let Assumption 3.5.1 hold. Then, for any B > 0 such that a + 5 < 1,
there exists an absolute constant cz > 0 such that, as long as |0g] < cg,

f P{T, =0H; " ()} >1—a—
T0er {Ta" =0l "0} 21— =5

for all sufficiently large n. Here the infimum is taken over the class T4 of all size-av tests.

Table 3.1 summarizes our results for the rank-based SGSCs from Example 3.4.1 by giving
an overview of the five properties listed in the Introduction. It also indicates consistency of

the tests. In all cases, it is assumed that the score functions involved are weakly regular.

3.5.83  Examples in the quadratic mean differentiable class

This section presents two specific examples in the quadratic mean differentiable class that
satisfy Assumption 3.5.1. First, we consider parametrized families that extend the bivariate
Konign alternatives (Konijn, 1956). These alternatives are classical in the context of test-
ing for multivariate independence and have also been considered by Gieser (1993), Gieser
and Randles (1997), Taskinen et al. (2003, 2004), Taskinen et al. (2005), and Hallin and
Paindaveine (2008).

Konijn families are constructed as follows. Let X7 ~ Px: € Pi’ and X5 ~ Px; € Py’
be two (without loss of generality) mean zero (unobserved) independent random vectors
with densities ¢; and g, respectively. Let G, and Gj3, denote their respective population
scored center-outward distribution functions, Px- € Pj¢,, their joint distribution, gx«(x) =

gx+((x1, T2)) = q1(21)g2(x2) their joint density. Define, for 6 € R,

X L, M\ /X; X;
X = = == A5 == A(;X*, (3511)
X, SM, I / \X3 X3

where M; € R¥*% and M, € R%*% are two deterministic matrices. For § = 0, the

matrix Ay is the identity and, thus, invertible. By continuity, As is also invertible for d
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in a sufficiently small neighborhood © of 0. For § € ©, the density of X can be expressed
as qx (w;6) = | det(A(;)’_qu* (Aj'x), which is differentiable with respect to §. The following

additional assumptions will be made on the generating scheme (3.5.11).

Assumption 3.5.2.

(i) The distributions of X have a common support for all 6 € ©. Without loss of generality,

we assume X := {x : qx(x;9) > 0} does not depend on §.

(ii) The map x — \/qx~(x) is continuously differentiable.
(iii) The Fisher information Tx (0) := [{{(z;0)}?qx (x; 0)dx of X relative to & at § = 0 is

strictly positive and finite.

Example 3.5.1.

(i) Suppose X7 and X are elliptical with centers 04, and 0,4, and covariances ¥; and 3,
respectively, that is, gx(xr) < ¢y (w;Eglwk) k = 1,2, where ¢ is such that Var(X}) =
3. and E[||Z;|2ox (|1 Z7]1?)?] < oo, k = 1,2 where Z; has density function propor-
tional to ¢r(||z¢||?) and pi(t) := @, (t)/ér(t). Then Assumption 3.5.2 is satisfied for
any My, M, such that 211\/.[;r + M;35 #0.

(ii) As a specific example of (i), if X} and X are centered multivariate normal or follow
centered multivariate ¢-distributions with degrees of freedom strictly greater than two,

then Assumption 3.5.2 is satisfied for any My, M5 such that ElM; + M;3, #0.

Next, consider the following mixture model extending the alternatives treated in Dhar
et al. (2016, Sec. 3). Let ¢ and ¢o be fixed (Lebesgue-)density functions for X; an Xo,
respectively. The joint density of X = (X, X3) under independence is ¢;q,. Letting ¢* #
¢1g2 denote a fixed joint density, mixture alternatives indexed by & € [0, 1] are defined as

ax(x;0) := (1 = 0)qiq2 + dq*.
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Assumption 3.5.3. It is assumed that

(1) (1+0%)qiq2 — 6*¢* is a bonafide joint density for some 6* > 0;
(i1) q* and q1qo are mutually absolutely continuous;
(iii) the function 0 — +/qx(x;9) is continuously differentiable in some neighborhood of 0;

() the Fisher information Ix (0) := [(¢* — q1¢2)*/{(1 — 0)q1q2 + dq* }da of X relative to

0 is finite, strictly positive, and continuous at 6 = 0;

(v) {(x;0) = ¢*(x)/{q(x1)g2(22)} — 1 is not additively separable.

Example 3.5.2. If gi(x;) = 1 for @, € [0,1]%, k = 1,2, and ¢*(x) # 1 is continuous and
supported on [0, 1]%1792 then Assumption 3.5.3 holds.

Proposition 3.5.4. Assumption 3.5.1 is satisfied by the Konijn alternatives under Assump-

tion 3.5.2, and by the mixture alternatives under Assumption 3.5.35.

3.5.4  Numerical experiments

Extensive simulations of Shi et al. (2021a) give evidence for the superiority, under non-
Gaussian densities, of the Wilcoxon versions of our tests over the original distance covariance
tests. That superiority is more substantial when non-Wilcoxon scores, such as the Gaussian
ones, are considered (Figure 3.4). In view of these results, there is little point in pursuing
simulations with non-Gaussian densities, and we instead focus on Gaussian cases (Figures
3.1-3.3) to study the impact on finite-sample performance of the dimensions d; and ds,

sample size n, and within- and between-sample correlations.

Example 3.5.3. The data are a sample of n independent copies of the multivariate normal
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vector (X1, X3) in R® 792 with mean zero and covariance matrix 3, where

(

L, 1=y,
T, 1=1,75 =2,
P Z:l,]:d1+1,

0, otherwise.
\

Here 7 characterizes the within-group correlation and we consider (a) 7 = 0, (b) 7 = 0.5,

and (c) 7 = 0.9. Independence holds if and only if p, a between-group correlation, is zero.

Example 3.5.4. The data are n independent copies of (X, X5) with X1; = Q1) (®(X7;))
and Xo; = Q;1)(P(X3;)) for i € [di] and j € [do]; here Qy(1y denotes the quantile function of
the standard Cauchy distribution and (X7, X5) is generated according to Example 3.5.3(b).

We compare the empirical performance of the following five tests:
(i) permutation test using the original distance covariance (Székely and Rizzo, 2013);

(ii) permutation test applying original distance covariance to marginal ranks (Lin, 2017);

(ili) center-outward rank-based distance covariance test with Wilcoxon scores and critical

values from the asymptotic distribution (Shi et al., 2021a);

(iv) new center-outward rank-based distance covariance test with normal scores and critical

values from the asymptotic distribution;

(v) likelihood ratio test in the Gaussian model (Anderson, 2003, Chap. 9.3.3 & 8.4.4).

The parametric test (v) is tailored for Gaussian densities and plays the role of a benchmark.

Unsurprisingly, in the Gaussian experiments in Figures 3.1-3.3, it uniformly outperforms

tests (i)-(iv). See Figure 3.4 for its unsatisfactory performance for non-Gaussian densities.
Figures 3.1-3.4 report empirical powers (rejection frequencies) of these five tests, based

on 1,000 simulations with nominal significance level 0.05, dimensions d; = dy € {2,3,5,7},
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and sample size n € {216, 432,864, 1728}. The parameter p in the true covariance matrix
takes values p € {0,0.005,...,0.15}. The critical values for tests (i) and (ii) were computed
on the basis of n random permutations. For tests (iii) and (iv), to determine the critical
values from the asymptotic distribution given in Corollary 3.5.1, we numerically compute the
eigenvalues by adopting the same strategy as in Shi et al. (2021a, Sec. 5.2); see also Lyons
(2013, p. 3291).

It is evident from Figure 3.4 that, in non-Gaussian experiments, the potential benefits of
rank-based tests are huge, particularly so when Gaussian scores are adopted (note the very
severe bias of the Gaussian likelihood ratio test as d increases). In Gaussian experiments, the
performance of the normal score-based test (iv) is uniformly better than that of its Wilcoxon
score counterpart (iii); that superiority increases with the dimension and decreases with the
within-group dependence 7. The superiority of both center-outward rank-based tests (iii)
and (iv) over the traditional distance covariance one and its marginal rank version is quite

significant for high values of the within-group correlation 7.

The way the normal-score rank-based test (and also the Wilcoxon-score one) outperforms
the original distance covariance test may come as a surprise. However, the original distance
covariance does not yield a Gaussian parametric test but rather a nonparametric test for
which there is no reason to expect superiority over its rank-based versions in Gaussian set-
tings. In a different context, we have long been used to the celebrated Chernoff-Savage
phenomenon that normal-score rank statistics may (uniformly) outperform their pseudo-
Gaussian counterparts (Chernoff and Savage, 1958). This is best known in the context of
two-sample location problems; see, however, Hallin (1994), Hallin and Paindaveine (2008),
and Deb et al. (2021) for Chernoff-Savage results for linear time series (traditional univariate
ranks and correlogram-based pseudo-Gaussian procedures) and vector independence (Maha-
lanobis ranks and signs under elliptical symmetry and Wilks’ test as the pseudo-Gaussian

procedure; measure-transportation-based ranks under elliptical symmetry or independent
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component assumptions). Although the present context is different, their superiority is an-
other example in which restricting to rank-based methods brings distribution-freeness at no

substantial cost in terms of efficiency /power.

3.6 Conclusion

This paper provides a general framework for specifying dependence measures that leverage
the new concept of center-outward ranks and signs. The associated independence tests have
the strong appeal of being fully distribution-free. Via the use of a flexible class of generalized
symmetric covariances and the incorporation of score functions, our framework allows one to
construct a variety of consistent dependence measures. This, as our numerical experiments
demonstrate, can lead to significant gains in power.

The theory we develop facilitates the derivation of asymptotic distributions yielding easily
computable approximate critical values. The key result is an asymptotic representation that
also allows us to establish, for the first time, a nontrivial local power result for tests of vector

independence based on center-outward ranks and signs.
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Figure 3.1: Empirical powers of the five competing tests in Example 3.5.3(a) (7 = 0, no
within-group correlation). The y-axis represents rejection frequencies based on 1,000 repli-
cates, the x-axis represents p (the between-group correlation), and the blue, green, red, and
gold lines represent the performance of (i) Szekely and Rizzo’s original distance covariance
test, (ii) Lin’s marginal rank version of the distance covariance test, (iii) Shi-Drton-Han’s
center-outward Wilcoxon version of the distance covariance test, (iv) the center-outward
normal-score version of the distance covariance test, and (v) the likelihood ratio test, respec-
tively.
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Figure 3.2: Empirical powers of the five competing tests in Example 3.5.3(b) (7 = 0.5,
moderate within-group correlation). The y-axis represents rejection frequencies based on
1,000 replicates, the z-axis represents p (the between-group correlation), and the blue, green,
red, and gold lines represent the performance of (i) Szekely and Rizzo’s original distance
covariance test, (ii) Lin’s marginal rank version of the distance covariance test, (iii) Shi-
Drton-Han'’s center-outward Wilcoxon version of the distance covariance test, (iv) the center-
outward normal-score version of the distance covariance test, and (v) the likelihood ratio test,
respectively.
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Figure 3.3: Empirical powers of the five competing tests in Example 3.5.3(c) (1 = 0.9,
high within-group correlation). The y-axis represents rejection frequencies based on 1,000
replicates, the x-axis represents p (the between-group correlation), and the blue, green,
red, and gold lines represent the performance of (i) Szekely and Rizzo’s original distance
covariance test, (ii) Lin’s marginal rank version of the distance covariance test, (iii) Shi-
Drton-Han'’s center-outward Wilcoxon version of the distance covariance test, (iv) the center-
outward normal-score version of the distance covariance test, and (v) the likelihood ratio test,
respectively.
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Figure 3.4: Empirical powers of the five competing tests in Example 3.5.4. The y-axis rep-
resents rejection frequencies based on 1,000 replicates, the x-axis represents p (the between-
group correlation), and the blue, green, red, and gold lines represent the performance of (i)
Szekely and Rizzo’s original distance covariance test, (ii) Lin’s marginal rank version of the
distance covariance test, (iii) Shi-Drton-Han’s center-outward Wilcoxon version of the dis-
tance covariance test, (iv) the center-outward normal-score version of the distance covariance
test, and (v) the likelihood ratio test, respectively.
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Chapter 4

ON THE POWER OF CHATTERJEE’S RANK CORRELATION

4.1 Introduction

Let X1, X5 be two real-valued random variables defined on a common probability space. We

will be concerned with testing the null hypothesis
Hy : X; and X, are independent, (4.1.1)

based on a sample from the joint distribution of (X3, Xs). This classical problem has seen
revived interest in recent years as independence tests constitute a key component in modern
statistical methodology such as, e.g., methods for causal discovery (Maathuis et al., 2019,

Section 18.6.3).

The problem of testing independence has been examined from a number of different
perspectives; see, for example, the work of Meynaoui et al. (2019), Berrett et al. (2021),
and Kim et al. (2020a), and the references therein. In this paper, our focus will be on
testing Hy via rank correlations that measure ordinal association. Rank correlations are
particularly attractive for continuous distributions for which they are distribution-free under
Hy. Early proposals of rank correlations include the widely-used p of Spearman (1904) and 7
of Kendall (1938), but also the footrule of Spearman (1906), the v of Gini (1914), and the
of Blomqvist (1950). Unfortunately, all five of these rank correlations fail to give a consistent
test of independence. Indeed, each correlation coefficient consistently estimates a population
correlation measure that takes the same value under Hy and certain fixed alternatives to Hy.

This fact leads to trivial power at such alternatives.
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In order to arrive at a consistent test of independence, Hoeffding (1948) proposed a cor-
relation measure that, for absolutely continuous bivariate distributions, vanishes if and only
if Hy holds. Blum et al. (1961) considered a modification that is consistent against all de-
pendent bivariate alternatives (cf. Hoeffding, 1940). Bergsma and Dassios (2014) proposed
a new test of independence and showed its consistency for bivariate distributions that are
discrete, absolutely continuous, or a mixture of both types. As pointed out by Drton et al.
(2020), mere continuity of the marginal distribution functions is sufficient for consistency of
their test. This follows from a relation discovered by Yanagimoto (1970) who implicitly con-
siders the correlation of Bergsma and Dassios (2014) when proving a conjecture of Hoeffding
(1948).

All three aforementioned correlation measures admit natural efficient estimators in the
form of U-statistics that depend only on ranks. However, in each case, the U-statistic is
degenerate and has a non-normal asymptotic distribution under Hy. In light of this fact, it
is interesting that Dette et al. (2013) were able to construct a consistent correlation measure
¢ which is also able to detect perfect functional dependence (see also Gamboa et al., 2018)
and in a recent paper that received much attention, Chatterjee (2021) gives a very simple
rank correlation, with no tuning parameter involved, that surprisingly estimates £ and has
an asymptotically normal null distribution.

This paper compares Chatterjee’s and also Dette-Siburg—Stoimenov’s rank correlation
coefficients to the three obvious competitors given by the D of Hoeffding (1948), the R of
Blum et al. (1961), and the 7* of Bergsma and Dassios (2014). Our comparison considers

three criteria:

(i) Statistical consistency of the independence test. A correlation measure i assigns to each
joint distribution of (X7, X5) a real number p(X;, X5). Such a correlation measure is
consistent in a family of distributions F if for all pairs (X7, Xs) with joint distribution

in F, it holds that u(Xy, X3) = 0 if and only if X; is independent of X5. Correlation
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measures that are consistent within a large nonparametric family are able to detect
non-linear, non-monotone relationship, and facilitate consistent tests of independence.
If a correlation measure p is consistent, then the consistency of tests of independence

based on an estimator p, of u is guaranteed by the consistency of that estimator.

(ii) Computational efficiency. Computing ranks requires O(nlogn) time. With a view
towards large-scale applications, we prioritize rank correlation coefficients that are
computable without much additional effort, that is, also in O(nlogn) time. This
is easily seen to be the case for Chatterjee’s coefficient but, as we shall survey in
Section 4.2, recent advances clarify that D, R, and 7* can be computed similarly

efficiently.

(iii) Statistical efficiency of the independence test. Our final criterion is optimal efficiency
in the statistical sense (Nikitin, 1995, Section 5.4). To assess this, we use different local
alternatives inspired from work of Konijn (1956) and of Farlie (1960, 1961); the latter
type of alternatives was further developed in Dhar et al. (2016). We then call an inde-
pendence test rate-optimal (or rate sub-optimal) against a family of local alternatives

if within this family the test achieves the detection boundary up to constants (or not).

The main contribution of this paper pertains to statistical efficiency. Chatterjee’s deriva-
tion of asymptotic normality for his rank correlation coefficient relies on a reformulation of
his statistic and then invoking a type of permutation central limit theorem that was estab-
lished in Chao et al. (1993). We found that a direct use of this technique to analyse the
local power is hard. In recent related work we were able to overcome a similar issue in a
related multivariate setting (Shi et al., 2021a; Deb and Sen, 2021) by developing a suitable
Héjek representation theory (Shi et al., 2020). Applying this philosophy here, we build a
particular form of the projected statistic that was introduced in Angus (1995) to provide

an alternative proof of Theorem 2.1 in Chatterjee (2021) that gives an asymptotic repre-
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sentation. Integrating the representation into Le Cam’s third lemma and employing further
a version of the conditional multiplier central limit theorem (cf. Chapter 2.9 in van der
Vaart and Wellner, 1996), we are then able to show that the test based on Chatterjee’s rank
correlation coefficient is in fact rate sub-optimal against the two considered local alternative
families; recall point (iii) above. Our theoretical analysis thus echos Chatterjee’s empirical
observation, that is, his test of independence can suffer from low power; see Remark 4.3.4
below. In contrast, the tests based on the more established coefficients D, R, and 7* are
all rate-optimal for all considered local alternative families. We therefore consider the latter
more suitable for testing independence than Chatterjee’s test. On the other hand, the test
based on Dette-Siburg—Stoimenov’s coefficient is empirically observed to have non-trivial
power against certain alternatives in finite-sample simulations. A theoretical study of this
phenomenon, however, has to be left to the future due to involved technical difficulties. The
proofs of our claims, including details on examples, are given in the supplementary material.

As we were completing the manuscript, we became aware of independent work by Cao and
Bickel (2020), who accomplished a similar local power analysis for Chatterjee’s correlation
coefficient and presented a result that is similar to our Theorem 4.3.1, Claim (4.3.5). The
local alternatives considered in their paper are, however, different from ours. In addition,
the two papers differ in their focus. The work of Cao and Bickel concentrates on correlation
measures that are 1 if and only if one variable is a shape-restricted function of the other

variable, while our interest is in comparing consistent tests of independence.
4.2 Rank correlations and independence tests

4.2.1 Considered rank correlations and their computation

When considering correlations, we will use the term correlation measure to refer to population
quantities, which we write using Greek or Latin letters. The term correlation coefficient is

reserved for sample quantities, which are written with an added subscript n. The symbol
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I denotes a joint bivariate distribution function for the considered pair of random variables
(X1, X3), and Fy and F; are the respective marginal distribution functions. Throughout,
(X11, X21), - .-, (X1p, Xo,) is a sample comprised of n independent copies of (Xi, X3).

We now introduce in precise terms the five types of rank correlations we consider in
this paper. We begin by specifying the correlation measure and coefficients from Chatterjee
(2021) and Dette et al. (2013). To this end, let (X1, Xopy), - - -, (X[, Xom)) be a rearrange-
ment of the sample such that X < --- < Xy, with ties, if existing, broken at random.
Define

3

T‘m = Z ]I(XQU] § Xgm) (4.2.1)
j=1
with 7(-) representing the indicator function, and £ := 37| 1(Xyy;) > Xop;)). We emphasize

that if Fy is continuous, then there are almost surely no ties among X, ..., Xs,, in which

case r; is simply the rank of Xy; among Xy, ..., Xop).
Definition 4.2.1. The correlation coefficient of Chatterjee (2021) is

€ =1— ”Z?:V[iﬂ] — 71
" 2> i1 b (n— L)
If there are no ties among Xo1, ..., Xa,, it holds that

n—1
3> icy Iy —
n2—1 '

(4.2.2)

fnzl_

Chatterjee (2021) proved that &, estimates the correlation measure

_JVarE{1(X > ) | X, }dFy(x)
[ Var{1(X, > x)}dFy(x)

&
This measure was in fact first proposed in Dette et al. (2013); cf. 7(X,Y") in their Theorem 2.
We thus term £ the Dette-Siburg-Stoimenov’s rank correlation measure.

We note that £ was also considered by Gamboa et al. (2018); see the Cramér—von Mises

index S5 oy, before their Properties 3.2. For estimation of ¢, Dette et al. (2013) proposed
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the following coefficient; denoted 7,, in their Equation (15).

Definition 4.2.2. Let K be a symmetric and twice continuously differentiable kernel with
compact support, and let K (z) := ffoo K(t)dt. Let hy, hy > 0 be bandwidths that are chosen
such that they tend to zero with

nh? — oo, nhj —0, nhy —0, nhhy— oo (4.2.3)
as n — 00. Define
1 & Uy — i/n\— Uz — /1
(g, ) = —— K( )K( ) 424
G (U1 U2) nhy Zzl Iy I ( )

with rp; as in (4.2.1). Then the Dette-Siburg-Stoimenov’s correlation coefficient is

1 1
f:; = 6/ / {Cn (ul,UQ) }2d’LL1dUQ — 2.
0 0

Next we introduce two classical rank correlations of Hoeffding (1948) and Blum et al.
(1961), both of which assess dependence in a very intuitive way by integrating squared devi-
ations between the joint distribution function and the product of the marginal distribution

functions.

Definition 4.2.3. Hoeffding’s correlation measure is defined as

D= / [F(er,22) — Fy(a) Fa(as) } dF (21, 22).

It is unbiasedly estimated by the correlation coefficient

1 1
D := nn—1)--(n—4) Z 1

i1#...Fis

(0 = X0) =1 (X0 < X0) 11 (X0 < X0) =1 (X0 < X0 )

[{]1<X211 < X2’i5> — ]1<X2i2 < X2i5)}{1<X2i3 < X2i5) — ]I(Xm < X21'5> }], (4.2.5)
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which is a rank-based U-statistic of order 5.

Definition 4.2.4. Blum—Kiefer-Rosenblatt’s correlation measure is defined as

R= / [F(e1.22) = Fi (1) Fa(ra) } B (2)d B ().

It is unbiasedly estimated by the Blum-Kiefer-Rosenblatt’s correlation coefficient

1 1
o= e T (=) 2. 1

117 Fie

[0 = Xi) =1 (X < 1) 11 (X0 < Xa) =1 (00 < X0 ) ]

H]l (X% < X2i6> -1 <X2i2 < X%) }{]1 <X2i3 < X2z‘6> -1 <X2i4 < Xzz‘ﬁ) H, (4.2.6)
which is a rank-based U-statistic of order 6.

More recently, Bergsma and Dassios (2014) introduced the following rank correlation,
which is connected to work by Yanagimoto (1970). We refer the reader to Bergsma and
Dassios (2014) for a motivation via con-/disconcordance of 4-point patterns and connections

to Kendall’s tau.
Definition 4.2.5. Write 1(x, x5 < x3,24) := 1(max{x;, 22} < min{xs,z4}). The Bergsma—
Dassios—Yanagimoto’s correlation measure is
"= 4P (X11,X13 < X2, X1a, Xop, Xo3 < X22,X24>
+4P <X11,X13 < X2, X1, Xog, Xog < X21,X23>
- 8P<X11,X13 < X2, X1, Xop, Xog < X22,X23>-

It is unbiasedly estimated by a U-statistic of order 4, namely, the Bergsma-Dassios—Yanagimoto’s

correlation coefficient

T i — D)(n—2)(n—3) 2

117 Al
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{1<X1i17X1i3 < X1127X1i4) + ]1<X1i27X1i4 < Xl’i17X1i3)
— ]1<X1i17X1i4 < X1127X1i3) — ]l(X1i27X1i3 < Xul,Xm)}
{]1<X2i17X2i3 < X2i27X2i4> + ]1(X2z‘2,X2i4 < X211,X2i3>

— ]1<X2i17X2i4 < X2i2;X2i3> -1 <X2i27X2i3 < X2i17X2i4> } (4.2.7)

Remark 4.2.1 (Relation between D,,, R,,, and 7). As conveyed by Equation (6.1) in Drton
et al. (2020), as long as n > 6 and there are no ties in the data, it holds that 12D,,4+24R,, = 7\
Consequently, 12D + 24R = 7* given continuity but not necessarily absolute continuity of

F'; compare page 62 of Yanagimoto (1970).

At first sight the computation of the different correlation coefficients appears to be of
very different complexity. However, this is not the case due to recent developments, which

yield nearly linear computation time for all coefficients except .

Proposition 4.2.1 (Computational efficiency). If data have no ties, then &,, D,, R,, and

T can all be computed in O(nlogn) time.

Proof. 1t is evident from its simple form that &, can be computed in O(nlogn) time (Chat-
terjee, 2021, Remark 4). The result about D,, is due to Hoeffding (1948, Section 5); see also
Weihs et al. (2018, page 557). The claim about 7;f is based on recent new methods due to
Even-Zohar and Leng (2021, Corollary 1.3) and Even-Zohar (2020b, Theorem 6.1); for an
implementation see Even-Zohar (2020a). The claim about R,, then follows from the relation

given in Remark 4.2.1. O]

Remark 4.2.2 (Computation of £). The definition of £ involves an integral over the unit
square [0, 1]2. How quickly the integral can be computed depends on smoothness properties of
the considered kernel and the bandwidth choice. Chatterjee (2021, Remark 5) suggests a time

complexity of O(n®/?). Indeed, for a symmetric and four times continuously differentiable
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kernel K that has compact support, there is a choice of bandwidths hq, hy that satisfies the
requirements of Definition 4.2.2 and for which & can be approximated with an absolute error

of order o(n~'/2) in O(n°/?) time.

To accomplish this we may choose hy = hy = n='/47¢ for small € > 0 and apply Simpson’s
rule to the two-dimensional integral in the definition of £’. By assumptions on K, the function
¢? has continuous and compactly supported fourth partial derivatives that are bounded by
a constant multiple of h;°. The error of Simpson’s rule applied with a grid of M? points in
[0,1]2 is then O(hy®/M*). With M? = O(hy**n!/4+¢/2) = O(n7/3+3), this error becomes
O(n~Y27¢) = o(n~"?). Due to the compact support of K, one evaluation of ¢, requires
O(nh,) operations. The overall computational time is thus O(nh; M?) = O(n'¥/5+%¢) which
is O(n®?) as long as € < 1/48.

Remark 4.2.3 (Computation with ties). When the data can be considered as generated
from a continuous distribution but featuring a small number of ties due to rounding, then
ad-hoc breaking of ties poses little problem. In contrast, if ties arise due to discontinuity of
the data-generating distribution, then the situation is more subtle. In this case, Chatterjee’s
&, is to be computed in the form from (4.2.2), but the computational time clearly remains
O(nlogn). In contrast, £ is no longer a suitable estimator of £. Hoeffding’s formulas for D,
continue to apply with ties, keeping the computation at O(nlogn) but, as we shall emphasize
in Section 4.4, the estimated D may lose some of its appeal. Bergsma—Dassios—Yanagimoto’s
7 is suitable also for discrete data, but the available implementations that explicitly account
for data with ties (Weihs, 2019) are based on the O(n?logn) algorithm of Weihs et al. (2016,
Sec. 3) or the slighly more memory intensive but faster O(n?) algorithm of Heller and Heller
(2016b, Sec. 2.2). Computation of R, with ties is also O(n?) (Weihs et al., 2018; Weihs,
2019).
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4.2.2  Consistency

In the rest of this section as well as in Section 4.3, we will always assume that the joint
distribution function F' is continuous, though not necessarily jointly absolutely continuous
with regard to the Lebesgue measure. Accordingly, both Xiq,..., Xy, and Xaq,..., X5, are
free of ties with probability one. To clearly state the following results, we introduce three

families of bivariate distributions specified via their joint distribution function F':

Fe .= {F : F' is continuous as a bivariate function},
Fo = {F . F' is absolutely continuous with regard to the Lebesgue measure},
FPSS = {F € F€¢: F has a copula C'(uy,us) that is three and two times continuously

differentiable with respect to the arguments u; and us, respectively}. (4.2.8)

Recall that the copula of F' satisfies F'(xy,x2) = C{Fi(x1), Fa(z2)}.
We first discuss the large-sample consistency of the correlation coefficients as estimators

of the corresponding correlation measures. Convergence in probability is denoted ——.
Proposition 4.2.2 (Consistency of estimators). For any F' € F€¢ and n — oo, we have
& 4+ ¢ D, D, R, R, and 75257

If in addition F € FP5S and K, hy, ho satisfy all assumptions stated in Definition 4.2.2, then

also & ¢

Proof. The claim about &, is Theorem 1.1 in Chatterjee (2021), and the one about £ is
proved in the supplement Section C.1.1 based on a revised version of Theorem 3 in Dette et al.

(2013). The remaining claims are immediate from U-statistics theory (e.g., Proposition 1 in

Weihs et al., 2018, Theorem 5.4.A in Serfling, 1980). O]

Next, we turn to the correlation measures themselves. It is clear that &, D, and R
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are always nonnegative, and that the same is true for 7* when applied to F' € F¢; this
follows from Remark 4.2.1. The consistency properties for continuous observations can be

summarized as follows.

Proposition 4.2.3 (Consistency of correlation measures). Fach one of the correlation mea-
sures £, R, and T* is consistent for the entire class F€, that is, if F € F€, then £ =0 (or
R =0 or 7t =0) if and only if the pair (X1, Xs) is independent. Hoeffding’s D is consistent
for F2¢ but not F€.

Proof. The consistency of £ is Theorem 2 of Dette et al. (2013), and Theorem 1.1 of Chatter-
jee (2021). The consistency of R is shown in detail in Theorem 2 of Weihs et al. (2018); see
also p. 490 in Blum et al. (1961). The consistency of 7* was established for ¢ in Theorem 1
in Bergsma and Dassios (2014), and that for F¢ can be shown via Remark 4.2.1; compare
Theorem 6.1 of Drton et al. (2020). Finally, the claim about D follows from Theorem 3.1 of

Hoeffding (1948) and its generalization in Proposition 3 of Yanagimoto (1970). O

4.2.8  Independence tests

For large samples, computationally efficient independence tests may be implemented using
the asymptotic null distributions of the correlation coefficients, which are summarized below.

We use ~~ to denote convergence in distribution.

Proposition 4.2.4 (Limiting null distributions). Suppose F' € F¢ has X; and X5 indepen-
dent. Asn — oo, it holds that

(i) for Chatterjec’s correlation coefficient &,, n/?¢, ~ N(0,2/5) (Theorem 2.1 in Chat-
terjee, 2021);

(ii) for Dette-Siburg-Stoimenov’s correlation coefficient £, n'/2¢* 5 0 assuming that

F € FP55 and K, hy, hy satisfy all assumptions stated in Definition 4.2.2 (revised
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verston of Theorem 3 in Dette et al., 2013; see Section C.1.2 of the supplementary

material);
(iii) for p € {D, R, 7"},

nlun ~ Z Aﬁl,’ug <§1211,1)2 - 1>7

v1,v2=1
where
1/(rtvivd) when = D, R,
o1 =
36/(mtv?v3)  when p = 7%,
for vi,vy = 1,2,..., and {&, 1, } as independent standard normal random variables

(Proposition 7 in Weihs et al., 2018, Proposition 3.1 in Drton et al., 2020).

For a given significance level a € (0,1), let 2;_,/5 be the (1—a//2)-quantile of the standard

normal distribution. Then the asymptotic test based on Chatterjee’s &, is
T = 1{n'2l6] > (2/5)2 - 21-apa}.

The tests based on p, with € {D, R, 7"} take the form

Te =T(np, > ¢ ), ¢, :=inf [x : P{ S ML, (52 - 1) < 1:} >1- a],

v1,02=1
where A and &y, 4,, v1,v2 = 1,...,n,... were presented in Proposition 4.2.4. We note
that Weihs (2019) gives a routine to compute the needed quantiles. It is unclear how to
implement the test based on Dette-Siburg-Stoimenov’s & without the need for simulation
or permutation as a non-degenerate limiting null distribution is currently unknown.

Given the distribution-freeness of ranks for the class F¢, Proposition 4.2.4 yields uni-

form asymptotic validity of the tests just defined. Moreover, Propositions 4.2.2-4.2.3 yield

consistency at fixed alternatives. We summarize these facts below.

Proposition 4.2.5 (Uniform validity and consistency of tests). The tests based on the
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correlation coefficients i, € {&n, Dn, Rn, 7t} are uniformly valid in the sense that
lim sup P(T¥" =1| Hy) = a. (4.2.9)
n—o0 FeFec

Moreover, these tests are consistent, i.e., for fived F' € F€ such that X1 and X5 are dependent

and i, € {&n, R, 7}, it holds that

lim P(T¢ =1 | Hy) = 1. (4.2.10)

n—o0

The conclusion (4.2.10) holds for u, = D,, if assuming further that F € F?°.

4.3 Local power analysis

This section investigates the local power of the four rank correlation-based tests of Hj in-
troduced in Section 4.2.3. To this end, we consider two classical and well-used families of
alternatives to the null hypothesis of independence: rotation alternatives (Konijn alterna-
tives; Konijn, 1956) and mizture alternatives (Farlie-type alternatives; Farlie, 1960, 1961; see

also Dhar et al., 2016).

(A) Rotation alternatives. Let Y7 and Y5 be two real-valued independent random vari-
ables that have mean zero and are absolutely continuous with Lebesgue-densities f; and fs,

respectively. For A € (—1,1), consider

e I R RS

For all A € (—1,1), the matrix Ax is clearly full rank and invertible. For any A € (—1,1),
let fx(x;A) denote the density of X = AAY . We then make the following assumptions on
Y1, Ys.

Assumption 4.3.1. It holds that
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(i) the distributions of X have a common support for all A € (—1,1), so that without loss
of generality X = {x : fx(x;A) > 0} is independent of A;
(ii) the density fy is absolutely continuous with non-constant logarithmic derivative py, :=
fil frs k=1,2;
(i1i) the Fisher information of X relative to A at the point 0, denoted Ix(0), is strictly
positive, and E{(Y},)?} < oo, E[{pr(Yx)}?] < 0o for k =1,2.

Remark 4.3.1. Assumption 4.3.1(ii),(iii) implies E{px(Y%)} = 0 and Zx(0) < co.

Example 4.3.1. Suppose fi(z) is absolutely continuous and positive for all real numbers z,

k=12 If
E(Y:) =0, B{(%)’} <o, E[{p(Vi)}] <00, fork=1,2, (4.3.2)

then Assumption 4.3.1 holds. As a special case, Assumption 4.3.1 holds if Y; and Y5 are
centred and follow normal distributions or t-distributions with not necessarily integer-valued

degrees of freedom greater than two.

(B) Mixture alternatives. Consider the following mixture alternatives that were used
in Dhar et al. (2016, Sec. 3). Let F; and F, be fixed univariate distribution functions
that are absolutely continuous with Lebesgue-density functions f; and fs, respectively. Let
F (xl, 56'2) =F (ml)Fg (:cg) be the product distribution function yielding independence, and
let G # Fj be a fixed bivariate distribution function that is absolutely continuous and such
that (X, Xs) are dependent under GG. Let the density functions of Fy and G, denoted by
fo and g, respectively, be continuous and have compact supports. Then define the following

alternative model for the distribution of X = (X, X5):
FX = (1 - A)Fo + AG, (433)

with 0 < A <1
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We make the following additional assumptions on Fy and G.

Assumption 4.3.2. It holds that

(1) the distribution G is absolutely continuous with respect to Fy and s(x) := g(x)/ fo(x)—1

18 continuous;
(ii) the conditional expectation E{s(Y)|Y1} = 0 almost surely for Y = (Y1,Ys) ~ Fo;

(i1i) the function s is not additively separable, i.e., there do not exist univariate functions

hy and hy such that s(x) = hy(x1) + ha(22);

(iv) the Fisher information Zx(0) > 0.

Remark 4.3.2. In this model, g(x)/fo(x) is continuous and has compact support, which

guarantees that Zx(0) < oco.

Example 4.3.2. (Farlie alternatives) Let G in (4.3.3) be given as
G(21,2) = Fi (1) By (22) [1+ {1 = Fi(w) }{1 = Ba(2) }|.

Then Assumption 4.3.2 is satisfied (Morgenstern, 1956; Gumbel, 1958; Farlie, 1960). Notice
also that E{s(Y)|Y2} = 0 almost surely for Y = (Y3, Y2) ~ Fp.

Example 4.3.3. Let the density f, be symmetric around 0, and consider two univariate
functions h; and ho that are both non-constant and bounded by 1 in magnitude, with hs
additionally being an odd function. Let f; be a density such that [ fi(z1)hi(z1)dz; #
0. Then the bivariate density g can be chosen such that s(x) = hy(z1)h2(x2) and then
Assumption 4.3.2 holds. For example, we can take fi(t) = fo(t) = 1/2 x 1(—=1 <t < 1),
hi(t) = |1 —2¥(¢)|, and hy(t) = 1 — 2W(t), where ¥ denotes the distribution function of
the uniform distribution on [—1,1]. In this case, E{s(Y)|Y2} is not almost surely zero for

Y = (}/17Y2)NF0
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For a local power analysis in any one of the two considered alternative families, we

examine the asymptotic power along a respective sequence of alternatives obtained as
Hyn(Ao) : A=A, where A, :=n"12A, (4.3.4)
with some constant Ay > 0. We obtain the following results on the discussed tests.

Theorem 4.3.1 (Power analysis). Suppose the considered sequences of local alternatives are
formed such that Assumption 4.3.1 or 4.3.2 holds when considering a family of type (A) or

(B), respectively. Then concerning any sequence of alternatives given in (4.3.4),
(i) for any one of the two types of alternatives (A) or (B), and any fixed constant Ay > 0,

lim P{T5" = 1| Hy,(Ao)} = o (4.3.5)

n—oo

(i) for any local alternative family and any number > 0, there exists some sufficiently

large constant Cz > 0 only depending on B such that, as long as Ay > Cpg,
lim P{Tgn =1 | Hl,n(AO)} Z 1-— 6, (436)
n—oo

where pi, € {Dy, Ry, 7}

In contrast to Theorem 4.3.1, Proposition 4.3.1 below shows that the power of any size-«
test can be arbitrarily close to a when A is sufficiently small in the local alternative model
Hi ,(Ap). This result combined with (4.3.5) and (4.3.6) manifests that the size-a tests based
on one of D,, R,, 7 are rate-optimal against the considered local alternatives, while the
size-a test based on Chatterjee’s correlation coefficient, with only trivial power against the

local alternative model Hy,(Ag) for any fixed Ay, is rate sub-optimal.

Proposition 4.3.1 (Rate-optimality). Concerning any one of the two local alternative fam-

ilies and any sequence of alternatives given in (4.3.4), as long as the corresponding Assump-
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tion 4.3.1 or 4.3.2 holds, we have that for any number § > 0 satisfying a+ 5 < 1 there exists
a constant cg > 0 only depending on [3 such that

inf P{To=0|Hi,(c5)}>1—-a—p

for all sufficiently large n. Here the infimum is taken over all size-a tests.

Remark 4.3.3. Assumptions 4.3.1 and 4.3.2 are technical conditions imposed to ensure that
(i) the two considered sequences of alternatives are all locally asymptotically normal (van der
Vaart, 1998, Chapter 7), i.e., the log likelihood ratio processes admit a quadratic expansion;
(ii) the conditional expectation of the score function given the first margin is almost surely
zero. Here the second requirement was invoked to allow for a use of the conditional multiplier
central limit theorem (cf. Chapter 2.9 in van der Vaart and Wellner, 1996) that appears to
be the key in analysing the power of Chatterjee’s correlation coefficient. In addition to their
generality, we would like to emphasize that these technical assumptions are indeed satisfied
by important models such as Gaussian rotation and Farlie alternatives, which are commonly

used to investigate local power of independence tests.

Remark 4.3.4. We note that the linear, step function, W-shaped, sinusoid, and circular
alternatives considered in Chatterjee (2021, Section 4.3) can all be viewed as generalized
rotation alternatives. The proof techniques used in this paper are hence directly applicable
to these five alternatives by means of a re-parametrization. To illustrate this point, consider,

for example, the following alternative motivated by Chatterjee (2021, Section 4.3):
X, =Y and X, =Ag(Y1)+ Ya, (4.3.7)

where Y] and Y5 are independent and absolutely continuous with respective densities fi, f.
Notice that model (4.3.7) and the one used in Chatterjee (2021, Section 4.3) are equivalent

for rank-based tests as ranks are scale invariant. Assume then that
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(i) the distributions of X = (X7, X5) have a common support for all A € (—1,1);

(ii) the density f» is absolutely continuous with non-constant logarithmic derivative py :=

f3/ f2 with 0 < E[{p2(¥2)}?] < o0;

(iii) the function g is non-constant and measurable such that 0 < E[{g(Y})}?] < oo.

Claims (4.3.5) and (4.3.6) will then hold for the alternatives (4.3.7) in observation of argu-

ments similar to those made in the proof of Theorem 4.3.1 for the rotation alternatives (A).

Remark 4.3.5. Cao and Bickel (2020, Section 4.4) performed a local power analysis for
Chatterjee’s &, under a set of assumptions that differs from ours. The goal of our local
power analysis was to exhibit explicitly the, at times surprising, differences in power of the
independence tests given by the four rank correlation coefficients from Definitions 4.2.1,
4.2.3-4.2.5. To this end, we focused on rotation and mixture alternatives from the literature.
However, from the proof techniques in Section C.1.8 of the supplementary material, it is
evident that Claims (4.3.5) and (4.3.6) hold for further types of local alternative families.
For the former claim, which concerns lack of power of Chatterjee’s &,, this point has been

pursued in Section 4.4 of Cao and Bickel (2020).

4.4 Rank correlations for discontinuous distributions

In this section, we drop the continuity assumption of F' made in Sections 4.2-4.3, and allow
for ties to exist with a nonzero probability. Among the five correlation coefficients, & is
no longer an appropriate estimator when F' is not continuous. We will only discuss the
properties of the other four estimators §,,, D,,, R,, and 7.

Recall that the computation issue has been address in Remark 4.2.3. Our first result in
this section focuses on approximation consistency of the correlation coefficients &,, D,, R,

and 7 to their population quantities. To this end, we define the families of distribution more
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general than the ones considered so far as follows:

F = {F : F is a bivariate distribution function},
F*:={F : F is not degenerate, i.e., F5(z) # I(z > ;) for any real number z},
F o= {F : F' is discrete, continuous, or a mixture of

discrete and jointly absolutely continuous distribution functions}. (4.4.1)
For the estimators &,, D, R,, and 7, the following result on consistency can be given.

Proposition 4.4.1 (Consistency of estimators). As n — oo, we have

(i) for F € F*, &, converges in probability to & (Theorem 1.1 in Chatterjee, 2021);
(ii) for F' € F, p, converges in probability to u for u € {D, R, 7"} (Proposition 1 in Weihs

et al., 2018, Theorem 5.4.A in Serfling, 1980).

The following proposition is a generalization of Proposition 4.2.3.

Proposition 4.4.2 (Consistency of correlation measures). The following are true:

(i) for F € F*, £ >0 with equality if and only if the pair is independent (Theorem 1.1 in
Chatterjee, 2021);

(ii) for F € F, D > 0; for FF € F*, D = 0 if and only if the pair is independent
(Theorem 3.1 in Hoeffding, 1948, Proposition 3 in Yanagimoto, 1970);

(iii) for F € F, R > 0 with equality if and only if the pair is independent (page 490 of Blum
et al., 1961);

(iv) for F € F7, 7% > 0 where equality holds if and only if the variables are independent
(Theorem 1 in Bergsma and Dassios, 2014, Theorem 6.1 in Drton et al., 2020).
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The asymptotic distribution theory from Section 4.2.3 can also be extended. As the
continuity requirement is dropped, the central limit theorems for Chatterjee’s &, still holds.
However, the asymptotic variance now has a more complicated form and is not necessarily
constant across the null hypothesis of independence (Theorem 2.2 in Chatterjee, 2021). A
similar phenomenon arises for the limiting null distributions of D,,, R, and 7;; when one
or two marginals are not continuous; see Theorem 4.5 and Corollary 4.1 in Nandy et al.
(2016) for further discussion. As a result, permutation analysis, which is unfortunately
computationally much more intensive, is typically invoked to implement a test outside the

realm of continuous distributions.

4.5 Simulation results

In order to further examine the power of the tests, we simulate data as a sample comprised
of n independent copies of (X7, X5), for which we consider a suite of different specifications

based on mixture, rotation, and generalized rotation alternatives.

Example 4.5.1. For the distribution of (X;, X3) we choose the six alternatives. In their

specification, Y; and Y; are always independent random variables and A = n=1/2A,,.

(a) The pair (X;, X3) is given by the rotation alternative (4.3.1), where Y7,Y, are both

standard Gaussian and Ag = 2. This is an instance of our Example 4.3.1.

(b) The pair (X, X5) is given by the mixture alternative (4.3.3), where

Ey (xl, xg) = ‘Il(xl)\ll(xg),
G w2) = W() W (2s) [T+ {1 = @ (21) {1 = V() }],

U(-) denotes the distribution function of the uniform distribution on [—1, 1], and Ay =

10. This is in accordance with our Example 4.3.2.
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(c¢) The pair (X7, Xs) is given by the mixture alternative (4.3.3), where the density func-
tions of ' and G, denoted by fy and g, are given by

fo(xl, 332) = 1/1($1)¢(372)7
g(w1,02) = (1) (w2) [1+ [1 =20 (1) [{1 = 20 (22) }],

P(t) =1/2 x1(—1 <t <1), and Ag = 20. This is an instance of our Example 4.3.3.

(d) The pair (X7, X5) is given by the generalized rotation alternative (4.3.7), where Y] is
uniformly distributed on [—1, 1], Y3 is standard Gaussian, g takes values —3, 2, —4, and

—3 in the intervals [—1, —0.5), [-0.5,0), [0,0.5), and [0.5, 1], respectively, and Ay = 3.

(e) The pair (X, X») is given by (4.3.7), where Y] is uniformly distributed on [—1, 1], Y
is standard Gaussian, g(t) = |t + 0.5|1(¢t < 0) + |t — 0.5|1(¢t > 0), and Ay = 60.

(f) The pair (X, X5) is given by (4.3.7), where Y7 is uniformly distributed on [—1, 1], Y5
is standard Gaussian, g(t) = cos(27t), and Ay = 12.

As indicated, the first three simulation settings are taken from Examples 4.3.1-4.3.3.
The latter three are motivated by step function, W-shaped, and sinusoid settings in which
Chatterjee’s correlation coefficient performs well; see Chatterjee (2021, Section 4.3).

Our focus is on comparing the empirical performance of the five tests 75", Téz, TPn,
TEn, Ta*. The first four tests are conducted using the asymptotics from Proposition 4.2.4.
The last test is implemented with bandwidths chosen as hy = hy = n /1% following the
suggestion in Section 6.1 of Dette et al. (2013) and using a finite-sample critical value, which
we approximate via 1000 Monte Carlo simulations. The nominal significance level is set
to 0.05, and the sample size is chosen as n € {500, 1000, 5000, 10000}. For each of the six
settings and four sample sizes, we conduct 1000 simulations.

Before turning to statistical properties, we contrast the computation times for calculating

the five considered rank correlation coefficients first. Table 4.1 shows times in the considered
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Table 4.1: A comparison of computation time for all the five correlation statistics. The
computation time here is the total time in seconds of 1000 replicates.

n &n &n D, Ry, Tn

200 0.157 12.57 0.158 0.263 0.253
1000 0.239 33.75 0.267 0.505 0.468
5000  1.655 401.4 1.823 3.601 3.087
10000  3.089 1152.6 3.315 7.607 7.132

rotation setting (a); the results for other settings are essentially the same. The calculations
of &, and & are by our own implementation, and those of D,,, R,, 7, are made using the
functions .calc.hoeffding(), .calc.refined(), and .calc.taustar() from R package
independence (Even-Zohar, 2020a), respectively. All experiments are conducted on a lap-
top with a 2.6 GHz Intel Core i5 processor and a 8 GB memory. One observes the clear
computational advantages of &,, D,, R,, and 7 over Dette et al. (2013)’s estimator .
The difference in computation time between Chatterjee’s coefficient &, and Hoeftding’s D,, is
insignificant. Both &, and D,, are slightly faster to compute than Blum—Kiefer-Rosenblatt’s
R, and Bergsma-Dassios—Yanagimoto’s 7,;; computation times differ by a factor less than

2.5.

Table 4.2 shows the empirical powers of the five tests. The results confirm our earlier
theoretical claims on the powers of the different tests in the different models, that Hoeffd-
ing’s D, Blum-Kiefer-Rosenblatt’s R, and Bergsma-Dassios—Yanagimoto’s 7% outperform
Chatterjee’s correlation coefficient in all the settings considered. Interestingly, the simula-
tion results suggest that the test based on £ may have non-trivial power against certain

alternatives; see results for Example 4.5.1(e),(f) in Table 4.2.



Table 4.2: Empirical powers of the five competing tests in Example 4.5.1. The empirical

powers here are based on 1000 replicates.

n n

n n

Results for Example 4.5.1(a)
500 0.103 0.178 0.954 0.955 0.957
1000 0.067 0.106 0.956 0.956 0.956
5000 0.043 0.078 0.953 0.952 0.952
10000 0.045 0.058 0.951 0.952 0.952

Results for Example 4.5.1(b)
500 0.087 0.138 0.898 0.896 0.897
1000 0.067 0.089 0.900 0.900 0.899
5000 0.059 0.082 0.891 0.890 0.891
10000 0.052 0.045 0.911 0.914 0.915

Results for Example 4.5.1(c)
500 0.088 0.559 0.412 0.404 0.410
1000 0.066 0.408 0.390 0.391 0.396
5000 0.060 0.327 0.363 0.364 0.364
10000 0.048 0.248 0.392 0.395 0.396

Results for Example 4.5.1(d)
0.443 0.122 0.913 0.921 0.919
0.285 0.111 0.923 0.928 0.927
0.081 0.083 0.936 0.936 0.937
0.081 0.052 0.955 0.954 0.955

Results for Example 4.5.1(e)
0.719 1.000 0.654 0.635 0.643
0.486 1.000 0.700 0.682 0.692
0.146 1.000 0.735 0.735 0.736
0.105 0.997 0.754 0.752 0.752

Results for Example 4.5.1(f)
0.688 1.000 0.635 0.603 0.611
0.459 1.000 0.669 0.655 0.660
0.141 1.000 0.717 0.712 0.713
0.100 0.994 0.726 0.730 0.728

4.6 Discussion

In this paper we considered independence tests based on the five rank correlations from
Definitions 4.2.1-4.2.5. As we surveyed in Section 4.2, recent advances lead to little difference
in the efficiency of known algorithms to compute these correlation coefficients. For continuous
distributions, i.e., data without ties, all correlations except for Dette-Siburg-Stoimenov’s ¥
can be computed in nearly linear time. Moreover, all but Hoeffding’s D give consistent tests
of independence for arbitrary continuous distributions; consistency of D can be established
for all absolutely continuous distributions.

Our main new contribution is a local power analysis for continuous distributions that
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revealed interesting differences in the power of the tests. This analysis features subtle differ-
ences but the take-away message is that &, is suboptimal for testing independence, whereas
the more classical D,,, R,,, and 7,; are rate optimal in the considered setup. This said, &, and
&’ have very appealing properties that do not pertain to independence but rather detection
of perfect functional dependence. We refer the reader to Dette et al. (2013) and Chatterjee
(2021) as well as Cao and Bickel (2020).

We summarize the properties discussed in our paper in Table 4.3. When referring to
independence tests in this table we assume continuous observations, i.e., F' € F¢. Moreover,
when discussing &, we assume additionally that the kernel K and bandwidths hy, ho satisty
all assumptions stated in Definition 4.2.2. The table features two rows for computation, where
the first pertains to continuous observations free of ties and the second pertains to arbitrary
observations. The third row of the table concerns consistency of correlation measures; refer
to (4.2.8) and (4.4.1) for the definitions of table entries. The fourth row concerns consistency
of independence tests assuming F' € F°. Finally, we summarize the rate-optimality and rate
sub-optimality of five independence tests under two local alternatives (A) and (B) considered

in Section 4.3.
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Table 4.3: Properties of the five rank correlation coefficients defined in Definitions 4.2.1—

4.2.5.
fin &n &n Dy, R, T
Computa- F € F¢ O(nlogn) O(n*3)  O(nlogn) O(nlogn) O(nlogn)
(i) tional
efficiency F € F O(nlogn) — O(nlogn) O(n?) O(n?)
Consistency of
(ii) correlation FeF@ FeFr FeF~ FeF FeF~
measures
Consistency of
(it") independence Fe Fe FeFpsS  FeFoe Fe Fe Fe Fe
tests
(A) rate sub- - rate- rate- rate-
( Statistical optimal optimal optimal optimal
iii
efficiency (B) rate sub- rate- rate- rate-
optimal optimal optimal optimal

(@) Recall the definitions of bivariate distribution families in (4.2.8) and (4.4.1)
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Appendix A
APPENDIX OF CHAPTER 2

A.1 Technical proofs

We first introduce more notation. For x € R, let x, denote the positive part of x, defined
as max{z,0}. For any vector v € RP, we denote ||v]| as its Euclidean norm. We define the
L* norm of a random variable as || X|| = inf{t > 0: |X| <t a.s.}, the ¢, (sub-gaussian)
norm as || Xy, = inf{t > 0 : Eexp(X?/t*) < 2}, and the 1¢; (sub-exponential) norm as
| X |4, = inf{t > 0: Eexp(|X|/t) < 2}. For any measure P, and kernel h, we let HY(Py)
be the U-statistic based on the completely degenerate kernel h¥)(-; P5) from (2.2.2):

—1
H?SZ)(';PZ) = (7;) Z h(£)<Zi1,--., ig;PZ>' (All)

1< <o <<y <n

A.1.1 Proofs for Section 2.3 of the main paper

Proof of Proposition 2.3.2. Since Y7, ...,Y,; are i.i.d. realizations of (, we have
P(maxy; <) = (P(C <)) = {F(a)}’ = (1~ Fe(a)}', (A.12)
je
where

(;j/z) (xQJ;lA)WQ_l P ( - xQJ;lA

for x > —A as x — oo by Equation (6) in Zolotarev (1962). Take

Fo(w) = P(( > o) = = ){1 +o(1)} (A.1.3)

x=4Mlogp+ A\i(p1 — 2)loglogp — A + \y.
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Noticing that © — oo as p — oo and recalling d = p(p — 1)/2, we obtain

d-Fe()
- p(pz_ - F(uj/Q) <x2§1A)W21 eXp ( B x;;lA){l +o(l)}
_ p(p2— 1 F(/ﬁ/2) (2logp) /> exp{ —2logp — (% - 1) loglog p — %}{1 +o(1)}
_ iu(l/i—j;;;exp (= )1 +o(n)}. (A14)

Combing (A.1.2) and (A.1.4), we deduce that

_ _ 2“1/2_2/4/ y
< )= 11— d —_ 1 . — = ™ _Z
P(%fﬁﬂ(yj <z)={l—-F¢x)}'— exp{ dlggod FC(.I)} exp{ TG0 /2) exp < 2) },

which concludes the proof of the lemma. n

A.1.2  Proofs for Section 2.4 of the main paper
A.1.2.1 Proof of Theorem 2.4.1

Proof of Theorem 2.4.1. We proceed in two steps, proving first the case m = 2 and then
generalizing to m > 2. For notational convenience we introduce the constants by := ||h||oo <

o0 and by := sup,||¢u||e < 00.

Step I. Suppose m = 2. We start with the scenario that there are infinitely many nonzero
eigenvalues. For a large enough integer K to be specified later, we define the “truncated”
kernel of ho(z1,20;P7) as hg (21,20, Pz) = Zle M@y (21)Pu(22), With corresponding U-

statistic

—1
~ n
Uk i= (2) Z hok(Zi, Z;;Pyz).

1<i<j<n
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For simpler presentation, define Y, ; = ¢,(Z;) for all v =1,2,... and ¢ € [n]. In view of the

expansions of he x(-) and ho(-), U rn and Un can be written as
K n K n 2
~ 1 _ 2 dic1 You
U = A o (2 30 %) = 2o (=5) )
v=1 i=1 v=1
1 { > B n 2 = S Y2
) - S (B

We now quantify the approximation accuracy of U Kn to (7”. Using Slutsky’s argument, we

and ﬁn =

obtain,

im0z 2} =P A - () 2
SP{;AU(WI/ZiYw) Z,\ (Z’ L “) an—el}
261}

K B n 9 K —~ ~
gp{;xv@ WZZZ;YW-) —;AUzxn—el—ez}+P{‘(n—1)(Un—UK,n) 261}

K n
Zi:l(}/;?i - 1)
4P ’ A : ‘ > e b, (A.L5)
{Zr=== o

where €1, €5 are constants to be specified later.

+ P{‘m — )0, — Ug)

The first term on the right-hand side of (A.1.5) may be controlled using Zaitsev’s mul-
tivariate moderate deviation theorem. For this, we require a dimension-free bound on
S u A (nY2Y,,) for any w = (uy,...,uk)’ € RE satisfying |u| = 1. Indeed, we

have

HZ ’\1/2 1/2

Thus all assumptions in Theorem 1.1 in Zaitsev (1987) are satisfied with the 7 in his Equa-

K

K K
[Yoilloo 1/2 vz _ .
Sl < (D) (Do N) e < A,
v=1
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tion (1.5) chosen to be n~'/2A'/2h,. We obtain the following bound:
K n 9 K
P{N A (023 V) = Az o —a—af
v=1 i=1 v=1
K n 24 1/2 K 1/2
(S ) (s S0
i=1 v=1 +

v=1

K 1/2 K 1/2
<P H Z(/\})/Q&,)z} > (xn —€ — €+ ; )\U> — 63}

v=1 +
5/2 _ €3 }
K K 1/2 2 nl/2
. 2 o _ 5/2 __nes
_P[;/\vgv > {(mn €1 62+;Av>+ 63}+] +c K exp( 02A1/262K5/2>’

(A.1.6)

where €3 is a constant to be specified later. Combining (A.1.5) and (A.1.6), we find using
Slutsky’s argument once again that

(v (Y
P{;Av(n 1/2;%’1.)2_2:&](71) an}

e K 1/2 9 K
SP[ZM(&?)_DZ{(xn—€1—62+2)\v)+ _63}+_Z>\v_€4i|
v=1 v=1 v=1
+P{((n—1)(Un—UKn) >el}+P{(észl‘l<?l 1>‘>e2}
+01K5/2exp<—%>+13{‘ f: /\U(fz—l)‘Zq}, (A.1.7)
v=K+1

where €4 is another constant to be specified later. In the following, we separately study the

five terms on the right-hand side of (A.1.7), starting from the first term.
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Let € =2 — [{(zn — a1 —ea + S5 M) Y2 — )2 — 3% A, — €], Then

€1+ €+ 2e3(x, — € — o+ Zle A)V?— 4 ey, ifx, + Zﬁil Ao > €1 + €9 + €3,

€, =
Ty + ZUK:1 Ay + €4, otherwise,
and
P{ A (E2 -1 zxn—e;}gP{ A(E2 -1 zxn}—i— € ) - max x’
> A€ -1 SoME Dz ) mas )

v=1 v=1

where p¢(z) is the density of the random variable ¢ := Y o7 A\, (€2 — 1).
We turn to the second term in (A.1.7). Proposition 2.6.1 and Example 2.5.8 in Vershynin
(2018) yield that

n
2
~1/2
[ 3o v
i=1

P2

< 8n—1 < 8(log 2) b3 < 1203.

Applying the triangle inequality and Lemma 2.7.6 in Vershynin (2018), we deduce that
| X n(e v 2N (1 ZYw)
v=K+1 i=1 i
2
SDIRSIED vt ELTD P

v=K+1 v=K+1

Using Proposition 2.7.1 in Vershynin (2018), this is seen to further imply that, for any €| > 0,

P{ i A”(”_lpizx”">22€3}éze’<p< 126226,1 X, )

v=K+1 i=1 v=K+1

Noting that

< bj i Ao,

v=K+1

Z Av <n_1 ; Y1;21>

v=K+1
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we obtain, for any e; > 03> "7 1 Ay,

P{|(n = 1)(T, — Ux)

»
<of] 3 (S

n

o 3 nfry)

v=K+1 v=K+1
Hf] 5 () 2ok 3 )
v=K+1 v=K+1
< 2¢1/12 exp ( — 5 2 ) (A.1.9)
12b2 Zv:K+1 )\

We next study the third term in (A.1.7). Again, Proposition 2.6.1 and Example 2.5.8 in
Vershynin (2018) give

n 2
[ > - )
i=1

— va
=

2
< 12n7 (b3 +1)%,

P2

which further yields

K n Y2. —1 n
oA < Y-
v=1 =1 2 i=1

Using Proposition 2.5.2 in Vershynin (2018), we have, for any e; > 0,

K n YQ 2
P(|on Y
v=1 =1

v 1 ne;
> < - s
. ( > 62> <2exp { I 1)2}. (A.1.10)

The fourth term in (A.1.7) is explicit, and it remains to bound the fifth and last term.

< 1220 V202 4 1).
P2

Since &, is a sub-gaussian random variable, £2 — 1 is sub-exponential. One readily verifies

€2 — 1|y, <4, and accordingly

| S a@-nf, < 3 adg-tlest 3 A

v=K+1 v=K+1 v=K+1
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By Proposition 2.7.1 in Vershynin (2018), this further implies that, for any ¢4 > 0,

P{‘ i Ao (€2 — 1)‘ > 64} < 2exp ( S ) (A.1.11)

oo
v=K+1 4 Zv:K—H )‘U

We now specify the integer K to be [n1739/5| By the definition of #, there exists
a positive absolute constant Cjy such that Zf}i K1 Mo S Cyn~? for all sufficiently large n.

Combining this fact and inequalities (A.1.7)—(A.1.11), we obtain

P{(n 1T, > xn}

—1
P{E A~ 1) > o}
< Py Y~ O )
< Fclza)} ()4 z’e[:cnlzl(%%{)+,zn]pcm)+ ©r 1203 Zzo)O:KH Ay
ton Yot 2 ) ()
P 48A2(b3 4 1)2 ' P caNV/2by K12 P 43 0k M
B A oA
<A{Fc(zn)} | (€)+ I,e[x72&§)+7xn]pc($)+ e’ exp 1262Cyn—"
n€2 n1/2€3 €4
) {_ ; } (1-30)/2 {_ } 2 (——)}
FEOP T BRe@ S T P A2z f AP

(A.1.12)

which we shall prove to converge to 0 uniformly on [—A, e,n’]. The starting point for proving
this are Equations (5) and (6) in Zolotarev (1962), which yield that the density p¢(z) and
the survival function F¢(z) :=P({ > z) of ¢ =Y o0 | A, (€2 — 1) satisfy

pelw) = 2\ - Fﬂ(m/z) (x;;lA)WN exXp ( B x;;lA){l +o(1)}
S () e (- MY oty

for x > —A tending to infinity. Here p; is the multiplicity of the largest eigenvalue A; and
=TI (1= Ao/A) 72

Consider the first term in (A.1.12). We claim that there exists an absolute constant

and Fe(r) = T
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C¢ > 0 such that, for all 0 <e < Ay/2,

sup [{F¢(z)} ™" max pe(2')| < CL. (A.1.13)

z>—A z!' €lz—e,x]

Indeed, we have p¢(z)/Fe(x) = (2M0) {1 + o(1)} as 2 — oo, and thus there exists an
absolute constant o > —A such that pc(z)/F¢(x) < A\ for all # > zy. Then for all
0<e<A/2andall x > ¢+,

MaXy/elz—eq] Pc(2) _ pe(z—€) < pe(z—€) _ 1 < 2
Felo) Fe(e) — Felo—e)—¢ pola—e)  Feo—)plo—c)—¢ =

where € € [0,¢€] is chosen such that pe(z — €') = maxycp—cq pc(2'). Now (A.1.13) holds
when taking

Cf = max {%, {Fe(xo+ A /2)} " max pg(x/)}.

x’e[fA,m0+)\1/2}
From (A.1.13), to control the first term in (A.1.12), it remains to show that (), con-

verges to 0 uniformly on [—A, e,n’] as n — oo. Choosing

ntA ntA
€ = 121)3(797f€(u + n9/2>, e=n" e=n0% ¢= 4an’9<x + + ng/z),
2)\1 2)\1
(A.1.14)
we deduce that the first term in (A.1.12) converges uniformly to 0 on [—A, e,n’] as n — oo

by observing that if z,, + Zle Ao > €1 + €9 + €2,

e <€ + € +263(xn+A)1/2 — €t

< 6()%09 +2CH

= N (en + %) + 2(en + %)m + (1263Cy + 4Cp)n =72,

and otherwise

b3 2 A

€ <etetete< S —) + (1203Cy + 4Cy)n =2 + 2079,
1

n?

Recall that we consider a positive sequence {e,} tending to 0.
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We then further verify that the other four terms in (A.1.12) also converge to 0 uniformly
on [—A,e,n’] as n — oo. There exists some absolute constant ¢; > 0 such that for all

IZQ)\l—A,

— K x4+ A\m/2-1 x4+ A
Fqz) > ck ( ) ex ( — ) A.1.15
)=y ey, PAT N (A-L1.15)
We then have, by noticing 6 < 1/3, for all n large enough and all z,, € [2\; — A, e,,n’],
= _ [(11/2) renn® + A\1/2
Felany ™ en (= gemms) < —gn (Mgn ) ew(n”
{ C(w )} eXp 12[)%0977,79 > szf 2N eXp( n )7

2 6
_ . ne; [(p1/2) renn® + A\ 1/2 /. 1/3
— < —
{Fe(wn)} " exp{ 48A2(b§+1)2} < ( o ) exp(~Cnt),

— 1/2 [(11/2) [ eqn®+AN1/2

—1,_(1-36)/2 _ nres } H1 ( n ) (1-30)/2 0
= _ [(11/2) ean® + A\ 1/2
Fe(z,)} ! (— < ) < ( ) _nf/2). A1.16
(Feta)) o (= gs) < M2 (25E2) ey (A1.16)

Here C” and C” are some absolute positive constants. The inequalities in (A.1.16) hold
for all sufficiently large n and all z,, € [—A,2X; — A] with replacing I'(u1/2)/cir - {(enn? +
A)/(2\1) 2 by {F¢(2\; — A)} 71, which together with (A.1.16) concludes the uniform con-
vergence.

If there are only finitely many nonzero eigenvalues, a simple modification to (A.1.12)

gives
—l=s= [(€;)+ : max  pe(2)
P{ D M8 = 1) > xn} Fe(z) #/€ltn—(5) 0]
ne2 nl/2¢,
2exp { = etV ek e (- — )],
+ 2exp 48/\2((?% + 1)2 + ¢ exp NN

(A.1.17)

where € = x, — [{(z, — &2 + A)i/ 2 €312 — A] and K is the number of nonzero eigenval-

ues. Choosing €5 = n™'/3, e3 = n~1/%, one can obtain that the right-hand side of (A.1.17)
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converges uniformly to 0 on [—A, e,n’] as n — oco.

We thus proved that

[ P{(n — 1)(7n > :L‘n} ]
. —1| <o(1).
Tn€[—A,ennf] P{ Do A(E2—1) > x”}

For the lower bound, it can be shown similarly that if there are infinitely many nonzero

eigenvalues, then

P{(n 1)U, > xn}

—1
P{E2 Ml — 1) > o}
> (Fo(x, 71[_ . "y _ 9pl/12 (_ €1 >
> {Fe(xn)} (€n')+ xue[xfﬁff(em+]p<<x) e~ oo
2 1/2
_ ____ "™ 1. 0-30)2 {_ s }_ <_€_4)}
QeXp{ 48A2(b§+1)2} an XD\~ A s f 2P\ T g ) |

(A.1.18)

K 1/2 2 K
€ = [{(xn—i-q—kq—i-g AU) +€3} —E >\U+64}—an
+
v=1 v=1

€1+ €3+ 2e3(xy, + €1+ €o + Zszl M)V 42 4y, if m, + 25:1 Ay > —€1 — €9,
-z, — 25:1 Ao + €5 + €4, otherwise.

We choose (A.1.14) as well. To conclude the lower bound, it suffices to notice that there

exists an absolute constant C’g* > 0 such that

sup [{Fe(@)} ™' max  pe(a")]| < C

>—A o/ €lw,a+(eh)+]

and €** converges uniformly to 0 on [—A, e,n%]: if z, + Zszl Ay > —€1 — €9, then

.. 6b2Cy + 2C,

A
€, < —)\1 (en—i—ﬁ) —|—2<en+

A+2\1/2
0< —0> +

(121)30@ + 409)77,_6/2 + 271_9
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for all n large enough, and otherwise

2C, A
O<artatdraa ST het (et g) 4G 40!
v n 1

If there are only finitely many nonzero eigenvalues, one can obtain

P{(n—l)ﬁn >xn} L

P{Z"O (€2 — )>xn} ~ Fe(x)

2 1/2

ne n'/“eq
= 2exp{ = gy |~ ek e (- i i) )
CPUT @@ 0z Tt FPUT ae, R

(A.1.19)

— (), - max x”
[ (4 e X oy P

where € := [{(x, + €2 + A)fr/2 +e3}? — A] — 2, and K is the number of nonzero eigenvalues.

Choosing e = n™/3, €3 = n=1/6 one can verify that the right-hand side of (A.1.19) converges

uniformly to 0 on [—A, e,n’] as n — oo. This completes the proof of the case m = 2.
Step II. We use the Hoeffding decomposition and the exponential inequality for bounded

completely degenerate U-statistics of Arcones and Giné (1993) to prove the general case

m > 2. Write
(77;)1(71—1)(77Z (n—1)H? (. +é( ) ( >(”_1)H¢(LZ)(';PZ).

Using Slutsky’s argument, we have

P{() " (0= )T >}

P{S Mg = 1) > @}

P{(n — 1)H7(12)(~; Pz) > x, — e#}
<

$- P{(5) ™ (1= 1)- B0 Py 2 e, )
PSZM@-D>a) = P{TLANE@-D>af

)

(A.1.20)

where {ejﬁz, ¢ =3,...,m} are constants to be specified later and € := )", efie.
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We analyze the first term and the remaining terms on the right-hand side of (A.1.20)
separately. To bound the latter, we employ Proposition 2.3(c) in Arcones and Giné (1993),

which states that there exist absolute positive constants Cj and C} such that for all e5 > 0,
P2 HY (+P7)] > &) < Chexp{~Cfes/ |19 (:P2)|0)*") (A12)

where ||h(-;P2)||oc < 2%, can be shown by the alternative formula of () (2, ..., 2;Py)

as below:
/—1

WOz, 25 Pz) = ho(z, . 2 P2)+ Y (-DF > (-, 2, P2)+(=1)Eh.
k=1 1<iyp << <O

Plugging (A.1.21) into each term in the sum on the right of (A.1.20) implies, for n > 2,

n P{(3) 7 (D) - 1) [HO (P > )

= P{ZRnE@ D>
< S e} Chesp - cr{n (7;) (’Z) 1ef:£/||h(f)(.; P} ]
(=3

( m

S H () e () e [ (3) (7) e/}

(=3

for x, € 21 — A, e,n?),
. -1
Sairin-ayton - {(7)(7) /)]
=3

for x, € [-A,2A — A],

IN

(A.1.22)

where the last step is due to (A.1.15) and the fact that § <1/3 <1 —2/¢ for ¢ > 3. Taking

So=n(y) (D e (G enm)) ™

the sum on the right-hand side of (A.1.22) is seen to be o(1). It remains to control the first
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term in (A.1.20). We start by writing the term as
P{(n - 1)H7(12) > Ty — (—:#}
P{E2 M~ 1) > 2}
- P{(n—l)Hﬁz) >In—€#} P{Zzil M (E2—1) >xn—e#}
CP{TEo@ D> -} P{TEAE D>

(A.1.23)

The first factor in (A.1.23) converges uniformly to 1 on [—A, e,,n’] by going through the same
proof in Step I while noticing that although z,, — €# is not necessarily greater than or equal

to —A, it holds for all x,, € [—A, e,n’] that

0< #_i 0 <§:b <m>_1<m>{i<e +£)+in—9/2}m (A.1.24)
T L e =L o )\ ) e \ T pe) T ' -

For the second term in (A.1.23), we have

1< FC(_xn - 6#) <14 6# ) maX.t’E[:vn—eﬁ,zn] p<($/>

Fe(za) Fe(an)

for z, > 0 and ¢ < )\;/2 by (A.1.13). By (A.1.24) again, we have the second term

<1+C-€f

in (A.1.23) uniformly converges to 1 as well. Therefore, we obtain the right-hand side of

(A.1.20) is uniformly converges to 1 on [—A, e,n’] as n — oo. Consequently,

P{(2) 00~ 10, > o)
sup
Zn€[—A,enn] [P{ Yo A(2-1) > x”}

- 1] < o(1).

Again a similar derivation yields a corresponding lower bound of order o(1), completing the

proof of the general case m > 2. m
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A.1.2.2  Proof of Theorem 2.4.2

Proof of Theorem 2.4.2. Since the marginal distributions are assumed continuous, we may
assume, without loss of generality, that they are uniform distributions on [0, 1]. Theorem
2.4.1 can then directly apply to the studied kernel A(-) in view of Assumption 2.2.1.

The main tool in this proof is Theorem 1 in Arratia et al. (1989). Specifically, we use the
version presented in Lemma C2 in Han et al. (2017). We let I := {(j,k) : 1 < j < k < p},
and for all v := (j,k) € I, we define B, = {({,v) € I : {{,v}Nn{j,k} # o} and

~1
m ~
Ny 1= Njk = (2> (n—1)Uj.
Then the theorem yields that

‘P(maxnu < t) —exp(—Ly,)| < A1+ Ay + As, (A.1.25)

uel

where L, = > ., P(n, > 1),

A = Z Z P(nu > t)P(Uﬁ > t)’ Ay = Z Z P(nu > 757775 > t),

ucl BEB, u€l BeBy\{u}
and As =Y E[P{n,>t|o(ns: 8¢ B.)} —Pn. >1t)|.
uel

We now choose an appropriate value of ¢ such that L, tends to a constant independent of p

as n — 0o. Let
t =4\ logp+ A (1 — 2)loglogp — A+ Ay =< 4)\ logp = o(n?). (A.1.26)

By Theorem 2.4.1,

L, = Dbt > 1) = 2= Y5 (041 4 (1) (A.1.27)
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Using Example 5 in Hashorva et al. (2015), we have for any ¢ > —A,

= K <t+A>u1/21€Xp<_t+A

Felt) = T(u/2) \ 2X 2\

Combining (A.1.27) and (A.1.28) implies

)[1 +0{(logp)~}]. (A.1.28)

plp—1) & t+ Ay\m/2-1 t+A
= v ( 2\ ) P < N 2—)\1>{1 +o(l)}
— p(p2— D) F(,ulj/Q) (2log p)1/21 exp{ —2logp — (% — 1) log log p — %}{1 +o(1)}
p1/2-2
- ?(u1/2) exp (= )1+ o)), (A.1.29)
where £ 1= [T,_, 1 (1= A/X0) 72

Next we bound Ay, Ay, and Aj separately. We have

Ar = p(p — 1)@ — 3{P(ms > )}

Moreover, since Hoeffding’s D is a rank-based U-statistic, Proposition 2.2.1(ii) yields that
1 is independent of ng for all uw € I, 5 € B,\{u}. Hence,

A=) Y P> t)P(ns > 1) =pp —1)(p — 2){P(m2 > 1)}

u€l BeBy\{u}

Again, by Proposition 2.2.1(iii), we have A3 = 0. Accordingly,

Ay + Ay + Ay < 2p(p — 1)*{P(n12 > 1)} = 2(2][)%)2 = O(%) (A.1.30)

Let L = 21/272 /T (111 /2) - exp(—y/2). Plugging (A.1.26), (A.1.29), (A.1.30) into (A.1.25)
yields

-1
‘P{ (2) (n—1) max ﬁjk —4A;logp — A1 — 2)loglogp + A < >\1y} - exp(—L)’
1<

< ‘P<maIX77a < t) - eXp<_Ln)
ue

+ ‘ exp(—Ly) — exp(—L)| = o(1).
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This completes the proof. O

A.1.2.3  Proof of Corollary 2.4.1

Proof of Corollary 2.4.1. We only give the proof for Hoeffding’s D here. The proofs for the
other two tests are very similar and hence omitted. As in the proof of Theorem 2.4.2, we
may assume the margins to be uniformly distributed on [0, 1] without loss of generality. To

employ Theorem 2.4.2; we only need to compute . We claim that

- log K )?
3 = %. (A.1.31)

v=K+1
If this claim is true, then by the definition of #, one obtains § = 1/8 — §, where § is an
arbitrarily small pre-specified positive absolute constant.

We now prove (A.1.31). Notice that the K largest eigenvalues are corresponding to the
K smallest products ij, 7,7 € ZT. We begin by assuming that there exists an integer M
such that the number of pairs (i, j) satisfying ij < M is exactly K:

|M/2)
2 ) [ M/i] - | M2 =K. (A.1.32)

To analyze D7 -1 Ay, we first quantify M. An upper bound on Ziﬂfm | M/i] is

LM1/2J M I.MI/ZJM LM1/2J1 1
Mo S Vi —<M(1 M2 1)<M<—1 M 1)
;LJ—;z ;z— og M+ 1) < M{glog M +1),
and a lower bound is
I_M1/2J LM1/2J LMI/QJ
M M 1
s ——1>:M S M
2 Bk 2 (5 2 -]

> Mlog| MY?| — | MY?| > Mlog(M"Y? — 1) — M'/2,
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Thus we have M log M =< K, which implies that M < K/log K. Then we obtain

LMl/QJ 0o LM1/2J 0o

PR Z@+Z ZW+Z ZW
v=K+1 =1 j=|M/i|+ J=1 i=|M/j]+ i=|M1/2|41 j=|M1/2]+1

1/2 1/2

= (M) o (M[5)5? (M1/2)(M?/2)

_ 2{log(M1/2)} L1 (ogK)*
M M K
If there is no integer M such that (A.1.32) holds, then we pick the largest integer M; and
the smallest integer My such that
[0/ [0,

2 Z LMlJ IMY?2 < K <2 Z LMQJ — MY,

and let K and K> denote the left-hand side and the right-hand side, respectively. One can
verify that Ky > K/2 and Ky < 2K for all sufficiently large K. Then we have

(log K 2(log K)?
ZA<Z>\UA Og 1)<(Og)

- K
v=K+1 v= K1+1
10gK2) (log K)?
d > = > .
wd 3z 3 =k ok
v=K+1 v=Ky+1
Therefore, the asymptotic result for Y 7° . | A, given in (A.1.31) still holds. O

A.1.2.4 Proof of Lemma 2.4.1

Proof of Lemma 2.4.1. Again we only prove the claim for Hoeffding’s D; Blum—Kiefer—
Rosenblatt’s R and Bergsma—Dassios—Yanagimoto’s 7* can be treated similarly. We first
establish the fact that Dj, =< %% as ¥j, — 0. Let {(Xj;, Xii)" : 7 € [5]} be a collection

of independent and identically distributed random vectors that follow a bivariate normal
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distribution with mean (0,0)" and covariance matrix

jk‘ ‘

5 5
Djk = Ejth = /hD<5Uj17 Tr1y---,Tjs5, $k5)¢(9€j1, Tr1y -« L5, Tks;s 2jk) H dlL‘jz’ H da,
i=1 i=1

where
5
O(Tj1, Tp1, - - -5 Tjs, Ths; Dj) = H O(Tji, This D),
i=1
and
1 5(32 + l’% — 22jkl’jil’]ﬂ'
"LA7 Z) E = { J— Je 1 }
O, Tt Vi) 2m(1—x2,)12 P 2(1- %2,

is the joint density of (X;, in)T. Notice that Dj; is smooth with respect to X:

5 5

FDjp b O(Tj1, Tt - - - Tjs, Ths; k) d d

E D(l"jl, Tk1y- -5 L5, $k5) oy T4 L s -
jk Jk i=1 i=1

In order to prove Dy, < Z?k, it suffices to establish that Dj, = 0 when X;, = 0, the first
derivative of Dj; with respect to X is 0 at X;; = 0, and the second derivative of Dj; with
respect to i, is 5/7% at X;; = 0, which can be confirmed by a lengthy but straightforward
computation.

Now we turn to our claim. Recall that Varjk{hg)(-;ij)} = 0 when ¥;; = 0. We will
show that the first-order term in the Taylor series of Varjk{hg)(-; P,i)} with respect to ¥4
is also 0. Suppose, for contradiction, the first-order coefficient (denoted by a;) in the Taylor
series of Varjk{hg)(-; P;i)} is not 0, then for ¥j; in a sufficiently small neighborhood of 0,
Varjk{hg)(-; Pjr)} < 0for ¥, < 0if a; > 0, and for ¥, > 0 if a; < 0, which contradicts the
definition of Varjk{hg)(-; P,i)}. This together with Ej hp < E?k completes the proof. [
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A.1.2.5 Proof of Theorem 2.4.3

Proof of Theorem 2.4.3. It is clear that we only have to consider max;, Uj, = C,(logp/n)
for some sufficiently large C,. The main idea here is to bound max; ﬁjk —max;«x Uj, with
high probability. To do this, we first construct a concentration inequality for |ﬁjk — Ujl.

The Hoeffding decomposition of the difference is

Ujt — Upe = — Zh (Xji, Xpi) " M*Z( ) ‘P, (A.1.33)

For controlling the first term in (A.1.33), recall that ||||o < b1 < 0o, and then h(V(+; Pj;) =
hi(:;P;1) — Eh is bounded by 2b; almost surely and ErA(V(:;P;;) = 0. We then apply
Bernstein’s inequality, giving

m n 1/
i ‘Zh ’>t1}§2€Xp<_2[Varjk{h( (,gjk)}z—%l(tl/m)/iﬂ]) (A-1.34)

By the definition of the distribution family D(~, p; k), we have
Vary {hV (5 Pjp)} < vEjph = Uz < 7, (logp/n).

Plugging this into (A.1.34) and taking t; = C(log p/n), where C is a constant to be specified
later, yields

1
P{™] Z PO Py)| > 22
n
Ctlogp } _ <1>Cf/(2m2’707+4mb101 /3)
2(m2yC., + 2mb,C, /3) :

< 2€Xp{ . (A.1.35)

p
We then handle the remaining term. By Proposition 2.3(c) in Arcones and Giné (1993),

there exist absolute constants C7, Cy > 0 such that for all ¢t € (0,1], 2 < ¢ < m,

P (3 P3| 2 0) < Crewp { = G <tjk>||oo>w}
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<crow{ ~cin( )"} < com (-2,

which further implies that

P{‘ Xk: <7Z>H£E)(';ij)’ > tz} < zm:P{ <?)1H£f)(.;pjk)| > 1, " (7)/cy }

(=2 ZZ 2 4b2/£( )/CW

< (5ol i)

(=2

Taking to = Cy(logp/n), where Cy is another constant to be specified later, we have

o3 (1) 2 cutompm} = (S 0n) (1) w1

(=2

Putting (A.1.35) and (A.1.36) together, and choosing

m 2/6
C) = 2mb, + m(4b? + 67C, )1/2 and 02—122 ( ),

C//
=2
we deduce
N 2 1/2 b?/e( ) log p o) L
p[‘Ujk Ui > {2m61+m(4b + 6~C,) +12; cr }T} < <2+;CE>E'

Then using Slutsky’s argument gives

U Sb () logp) _ 2+ 300, C 1
P[r?gglUjk—Ujklz{2m61+m(4b§+6707)1/2+12§ o } = ]S 25_2 e'[,’

which implies that, with probability at least 1 — (1 +>_;", C}/2)p~*

P2/t |
max|U]k — Uil < {2mb1 + m(4b? +6vC, )1/2 + 122 165/ )} Oigp
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Hence for n > 2, we have with probability no smaller than 1 — (1 + >_;", C}/2)p~*

max Ujk > max Uji — max |Uj, — Ujg|
j<k i<k

b () logp _ 5 (3) logp
_ 2 1/2 _ 2
> (€, — 2mby — m(4B} + 6+C,) 12;2 o } e

where the last inequality is satisfied by choosing C., large enough. Accordingly, for any given
Q.. the probability that

j\l ( ) maXU]k > 5logp > 4logp + (11 — 2)loglogp — )\__1_@&
1

tends to 1 as p goes to infinity. The proof is thus completed. O

A.1.2.6 Proof of Theorem 2.4.4

Proof of Theorem 2.4.4. In view of Corollary 2.4.2, the results follow from Lemma 2.4.1 and
the fact that Dy, R, 75}, < E?k as X, — 0, which has been shown in the proof of Lemma
2.4.1. m

A.1.83 Proofs for Section 2.6 of the main paper
A.1.3.1 Proof of Theorem 2.6.1

Proof of Theorem 2.6.1. The proof of Theorem 2.6.1 hinges on the identity (2.6.1), the fact
that random vectors of continuous margins almost surely have no ties among the values of
each coordinate, and that Ehp > 0 and Ehg > 0 (see Hoeffding (1948, p. 547) and Blum
et al. (1961, p. 490)).

The identity (2.6.1) now gives that Eh,« > 0 and that Eh,~ = 0 if and only if Ehp =

Ehr = 0, which in turn implies independence of the considered pair of random variables. [
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A.1.8.2  Proof of Proposition 2.6.1

Proof of Proposition 2.6.1. The copula of (X,Y)" is given by Nelsen (2006, p. 56):

)
min(u, v), if u—v| > 3,

Clu,v) = Cmax(0,u+v —1), if ju+v—1]> 5

+ 1 .
\ =1 otherwise.
We summarize the copula in Figure A.1la.
(% v
1 >
Ty — _ d
u utv—1 Clu=,vt) =0 C(ut,vt) =
NN S\
1 ut+v 1 Cu=,v7) =0 (ut,v7) =0
? 2 4
0 v
u u
1 — d — d 1
5 1 ut=u— g, v = % —u— 5, 5
+ = du +_1_ du
(a) The copula of the circular uniform distri- ur=ut+G, v =5 -ut
bution with its support marked in red. (b) Integral on part of the support.

Figure A.1: The copula of the circular uniform distribution.

Since both X and Y are continuous, by the arguments in Schweizer and Wolff (1981), we
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obtain

Bhp =30 [{F(2.9) = (o) By PdF (n.0)
= 30/{C(u, v) — uv}dC(u,v)
and Bhy =90 [ {Fla,y) = Fi(a) By AR () Falo)
= 90/{C(u, v) — uv} dudv.
We first compute Ehp. Notice that 9*C(u,v)/0udv = 0 in [0, 1] x [0, 1] except for the
support of C'(u,v) (marked in red in Figure A.la). Therefore, we only need to compute the

integral on the support consisting of four line segments. In Figure A.1b, we illustrate how

to find dC(u,v) on the line segment from (0,1/2) to (1/2,0) (denoted by C;). We have

du

dC(u,v) = Clu™,v") = Cu™,v7) = Clu",v") +Clu",v7) = 5

and thus the integral on the line segment C; is given by

1/2 1 2du 1
30 C(u,v) — uwo}*dC(u,v :30/ O—ul=—u)py —=—.
(Ol e) —wpaC(ue) =30 |- {o-u(z-u)} 5 =

We can evaluate the integral on the other three line segments (denoted by Cs, Cs3,Cy, respec-

tively) similarly, and we find

1
Ehp = 30/ {C(u,v) —uv}*dC(u,v) = —.
C14Co+C1Cs 16

The computation of Ehg = 90 [{C(u,v) — ww}*dudv = 1/16 is standard, and we omit
details. Finally, using the identity (2.6.1), we deduce that Eh,. = 1/16. O]

A.2 DMore comments on 7

First of all, we show that the identity (2.6.1) in the main paper may be false when ties exist.
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Example A.2.1. If we take z; = (| (i +2)/3],4)" for i € [6], then

6 -1
(5) Z hD(Zil,‘..,Z%) :1/27 hR(Zl,...,Zﬁ):?)/Q,

1< < <15<6

6\ !
and (4) Z he(Ziy, ..., 2i,) = 3/5.

1<y < <is<6

In view of Example A.2.1, the proof of Theorem 2.6.1 cannot be directly extended to pairs
consisting of both discrete and continuous random variables, and the question if Bergsma—
Dassios’s conjecture is correct remains open in that regard. However, by the Lebesgue
decomposition theorem, in order to prove Bergsma—Dassios’s conjecture it suffices to prove
the case where the pair follows a mixture of discrete and singular measures.

We now provide a second proof of Theorem 2.6.1 for the absolute continuity case only.
It connects the correlation measures raised by Bergsma and Dassios (2014) and the one
in the proof of Proposition 9 in Yanagimoto (1970). We believe the resulting alternative
representation of the population 7* is of independent interest, e.g., from the point of view of

multivariate extensions of 7* as considered by Weihs et al. (2018).

Proposition A.2.1. For any pair of absolutely continuous random variables (X,Y)" € R?
with joint distribution function F(x,y) and marginal distribution functions Fy(x), F5(y), we

have

1
~ Eh,.
18

(0

1
= /F2d(F+F1F2) - /F2d(FF1) —Q/FFld(FFQ) +/FF1d(F2) T
i 1
@) /deF— 2/FF1F2dF+2/F2dF1dF2 -5

(i) /(F — F\R)*dF + 2/(F — I Fy)*dRdFy

1 1
— —Ehp+ —Eh
30 0 g e
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where the term on the righthand side of the identity (ii) is Yanagimoto’s correlation measure.

Proof of Proposition A.2.1. We prove identities (i)—(iit) sequentially. Let Wy, Uy, W3 denote

the expressions on the right-hand side of identities (), (i7), (ii7), respectively.

Identity (i). Let {(X;,Yi) }icja be four independent realizations of (X,Y)'. For

Bergsma-Dassios—Yanagimoto’s 7%, we have, by Equation (6) in Bergsma and Dassios (2014),

1

1
3 Eh;« = gP{maX(Xl,Xg) < min(X3, Xy), max(Yy,Y2) < min(Y3, Yy)}

1
+ 3 P{max(Xy, X5) < min(X3, X4), max(Y3,Ys) < min(Y;,Ys)}

2
—3 P{max(X;, X5) < min(X3, X4), max(Y;,Y3) <min(Ys,Yy)}.  (A.2.1)

We study the three terms in (A.2.1) separately, starting from the first term. Using Fubini’s

theorem, we get

P{max(Xy, X5) < min(X3, X4), max(Yy, Y2} < min(Ys,Ys)}

= /P{max(Xl,Xg) <z, max(Y1,Ys) < y}dP{min(X3, Xy) <z, min(Y3,Y) <y}
= /F(x,y)zdP{min(Xg,)Q) <z, min(Y3,Yy) <y}, (A.2.2)
where
P{min(Xy, X,) < z, min(Ys,Yy) <y} =P{(AUB)N(CUD)} =PI UIIUIIIUIV)
and A:={X; <z}, B:={X4 < X}, C:={Ys <y}, D:={Ys <y},

I =ANC={X3<uzY; <y}, IT:=AND={X3<xY, <y},

IIT:=BnNC={X, <zY; <y}, IV.=BnNnD={X,<zY, <y}
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From the inclusion—exclusion principle, we obtain

P{min(X3, X4) <z, min(Y3,Yy) <y}

=P(I)+P(II)+P(II)+P(IV)
—P(INII)—=PUINII)—~PUINIV)=PIINIII)—PUIINIV)=P(IIINIV)
+PUINIINIIN)+PUINIINIV)+PUNIIINIV)+PUIINIIINIV)
—PINIINIIINIV)

—F4+ R+ FFR+F—-FF,—FF,—F>—F? _FF —FF+F* 4+ F2+ F? + F? — [?

=2F +2FFy, — 2FF, — 2FF, + F?. (A.2.3)
Plugging (A.2.3) into (A.2.2) implies that

P{max (X1, X5) < min(X3, X4), max(Y1, Y2} < min(Ys,Y,)}

= / F?d(2F + 2F Fy — 2FF, — 2FF, + F?). (A.2.4)
The second term in (A.2.1) can be written as

P{max(X;, X5) < min(X3, X4), max(Y3,Ys) < min(Y;,Ys)}
= P{max (X, Xy) < min(X3, Xy)}
— P{max (X1, X5) < min(X3, Xy), min(Y7,Ys) < max(Y3, Yy)}

= /P{maX<X1,X2) < z}dP{min(X3, X,) < z}

— P{max (X1, X5) <z, min(Y,Ys) < y}dP{min(X3;, Xy) <z, max(Ys, Y,) <y},
(A.2.5)

where we have

P{min(X3, X4) < 1} = P(AU B) = 2F, — F}, (A.2.6)
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and
P{max(X;, Xo) <z, min(Y1,Y2) <y}
= P{max(X1, Xy) <z, Y1 <y} + P{max(X, Xs) <z, Y <y}
— P{max(X7, X5) < z, max(Y7,Ys) <y}
=2FF, — F? (A.2.7)
and

P(min{ X3, X4} <z, max{Y3,Vi} <y)
= P[{(X3 <2)U(Xy <a)} N {(Ys <y) N (Ya < y)}]
=P{AN(CND)}u{BN(CND)}
=2FF, — F? (A.2.8)

Plugging (A.2.6)—(A.2.8) into (A.2.5) yields

P{max (X, X5) < min(X3, X4), max(Y3,Y) < min(Y7,Y3)}

_ / F2A(2FF, — F?) — / (2FF, — F?)A(2FF, — F?). (A.2.9)

Next we handle the third term in (A.2.1). We have by symmetry that

Y5, Y;) < min(Yy,Y3)}. (A.2.10)
We also notice that

P{max (X, X5) < min(X3, Xy)



= P{max (X, Xy) < min(X3, Xy),

max(Y7,Ys) < min(Y3, Yy)}
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+ P{max (X, X5) < min(X3, X4), max(Y3,Y;) < min(Y;,Y5)}
£ P{max(X;, X) < min(Xy, X,), max(¥i,¥;) < min(Ys, V3)}
+ P{max (X, X5) < min(X3, X4), max(Y1,Ys) < min(Ys,Ys)}
+ P{max (X, X5) < min(X3, X4), max(Ys,Y3) < min(Y;,Y,)}
+ P{max(X, X») < min(X3, Xy), max(Ys,Ys) <min(Yy,Y3)} (A.2.11)

assuming marginal continuity of (X,Y)". Combining (A.2.10) and (A.2.11) gives

P{max(X;, X5) < min(X3, X4), max(Y7,Y3) < min(Ys,Y,)}
- ﬂP{max(Xl, X») < min(Xa, X,)
— P{max (X1, X3) < min(X3, Xy), max(Yy,Ys) < min(Y3,Ys)}
— P{max(X1, X5) < min(X3, X4), max(Y3,Y;) < min(Y7,Ys)}
_ i{ /(2FF1 — F)d(2FF, — F?) — /F2d(2F +OF\Fy — 2FF, — 2FFy + FQ)}.
(A.2.12)

The identity (7) follows by plugging (A.2.4), (A.2.9), and (A.2.12) into (A.2.1).

Identity (i7). Next we prove that ¥; — Wy = 0. A straightforward computation gives

vy, — Uy

1
= - /ng(Fng) — /de(FFl) —2/FF1d(FF2) +/FF1d(F2) +2/FF1F2dF+ G

2
= —//FQ@%d dy —//1?2@8—%(,@@+//FQF1 0 Fdxdy
or 0Oy Oxdy

—2//FFla—ded +2//FF18—8—Fdxdy é

(A.2.13)
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To further simplify (A.2.13), notice that

OF, OF OF OF O*F O*(F3F,/3)
F2 +2FF—— + F*F = / / - U —
/ / ox 6y e dy + Yox dy )dxdy 0x0y dady

Adding (A.2.13) and (A.2.14) together yields

U, — U, = //FQ%@d dy + 2//FF18—F@dxdy —2//F2@6—Fdxdy E

9
2
aFQ/ FF1 dzdy —Q/aFl/F2—ddx—|—§

_ /aFQFQd 8F1F13d 1
E
3

ox 2

1
= — — —:O
<12)+2 ’

which completes the proof of identity (7).
Identity (i7i).  This identity was discovered by Yanagimoto (1970). To see this, it
suffices to show that
1
Ty — 0y = /FngdF - 4/FF1F2dF1dF2 + 2/F12F22dF1dF2 +5=0.

We start from the identity

O2(FF2F?) OF, OF
1= dd — F2F2 L //4FFF—1—2dd
// D0y = // Zaa vy + g oy Y

//QFQFQa Qd dy +//2F1 %a—Fdxd

(A.2.15)

We also note that

F FOF
//2FF1F28 2d dy //FQFQa @dxd
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2
_/ aF?/ (FFY) da:d —/F28F2d = (A.2.16)

0 3
and
//2FF1F288—%d dy //F1 @a—Fdxdy
2
:/ aFl/ (FF,) /FQ@dx— 1, (A.2.17)
B 3
and

OF, OF, oF, OF, 1N\ /1 2
2 Fy———dady —2/F2 —dz /F2 —dy (=) == A.2.18
/ / > 0x Oy b ox Iy (3) <3) 9 ( )
Combining (A.2.15)—(A.2.18) concludes the claim. O

A.3 Additional simulation results

First, we report the sizes and powers of the proposed tests with simulation-based critical
values (M = 5,000) as shown in Table A.1. The table shows results only for Examples 2.5.1,
2.5.3, and 2.5.4 as the simulated powers under Example 2.5.2 were all perfectly one. It can
be observed that all sizes are now well controlled, with powers of the proposed tests only

slightly different from the ones without using simulation.

Next, in order to interpret the power in Examples 2.5.2-2.5.4, we consider the following

example.
Example 2.5.2-2.5.4 (continued). We consider modified data drawn as
X,=aX +(1-a)E

where o € [0, 1] represents the level of a desired signal, X is the same as that in Examples

2.5.2-2.5.4, respectively, and € ~ N,(0,1,) is independent of X .
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Table A.1: Empirical sizes and powers of simulation-based rejection threshold in Examples
2.5.1-2.5.4 (The powers under Example 2.5.2 are all perfectly 1.000 and hence omitted)

"™ P DHS, DHS; DHS,- DHSp, DHSp DHS,. DHSp DHSz DHS,. DHSp, DHSp DHS,.

Example 2.5.1(a) Example 2.5.3(a) Example 2.5.3(b) Example 2.5.3(c)
100 50 0.053 0.053 0.053 0.964 0.964 0.965 0.746 0.651 0.694 0.639 0.591 0.611
100 0.051 0.051 0.050 0.955 0.954 0.955 0.731 0.636 0.676 0.638 0.581 0.607
200 0.045 0.045 0.044 0943 0944 0945 0.698 0.602 0.643 0.609 0.549 0.580
400 0.045 0.046 0.046 0.930 0.931 0.932 0.674 0.577 0.624 0.592 0.524 0.557
800 0.054 0.051 0.061 0.921 0.921 0.923 0.651 0.548 0.594 0.567 0.490 0.526
200 50 0.050 0.053 0.0561 0.991 0.991 0.991 0.896 0.853 0.872 0.822 0.800 0.810
100 0.048 0.048 0.047 0984 0.985 0.985 0.874 0.824 0.847 0.803 0.775 0.787
200 0.046 0.045 0.044 0983 0984 0.984 0.852 0.794 0.820 0.785 0.757 0.769
400 0.051 0.058 0.055 0.983 0.984 0.984 0.842 0.778 0.805 0.766 0.738 0.751
800 0.042 0.044 0.046 0.978 0978 0.979 0.809 0.746 0.776 0.741 0.708 0.727

Example 2.5.4(a) Example 2.5.4(b) Example 2.5.4(c)
100 50 0.081 0.085 0.080 0.096 0.094 0.096 0.121 0.124 0.126
100 0.079 0.074 0.077 0.074 0.074 0.074 0.088 0.090 0.092
200 0.052 0.059 0.056 0.067 0.069 0.068 0.072 0.072 0.074
400 0.064 0.064 0.064 0.059 0.057 0.056 0.059 0.058 0.065
800 0.051 0.048 0.048 0.058 0.054 0.052 0.061 0.064 0.059
200 50 0.099 0.099 0.098 0.110 0.114 0.112 0.115 0.120 0.115
100 0.060 0.064 0.063 0.081 0.084 0.080 0.090 0.091 0.087
200 0.066 0.067 0.071 0.046 0.046 0.044 0.080 0.070 0.079
400 0.058 0.062 0.068 0.060 0.070 0.069 0.059 0.058 0.058
800 0.045 0.049 0.050 0.052 0.050 0.050 0.061 0.060 0.062

The relationships between empirical powers (5,000 replicates) based on observations from
X, and the value a for Examples 2.5.2-2.5.4 (continued) are summarized in Figures A.2-
A.5. As expected, the power of each test is monotonically increasing in «, i.e., as the signal
increases. Similar patterns as we discussed for Examples 2.5.2-2.5.4 can be found here. It
can be noticed that, the three proposed tests, followed by LD,«, uniformly dominate the

other tests in Examples 2.5.2 and 2.5.3 (continued) that are sparse settings.
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Appendix B
APPENDIX OF CHAPTER 3

B.1 Proofs

Some further concepts and notation concerning U-statistics are needed in this section. For
any symmetric kernel h, any integer ¢ € [m], and any probability measure Pz, recall the
definition

he(zi...,20;Pz) = Eh(z1...,20, Zoyr, ..., Z1n),

of the kernel and define

/-1
ho(zi,.., 26 Pz) = ho(z1,.. . 26 Pz) —Bh =Y > h(zi,...,2,;Pz),

k=1 1<i; <--<ip <t
where Z,, ..., Z,, are m independent copies of Z ~ Pz and Eh := Eh(Zy,...,Z,,). The
kernel as well as the corresponding U-statistic are said to be degenerate under Pz if hy(-) has
variance zero and completely degenerate if the variances of hi(Z1),... , hy1(Z1,. .., Z,;,) all

are zero. We also have, for any (possibly dependent) random vectors Z1,. .., Z/,
n\ "\ m\~
(m) 3 h(Zgl,...,ng>:Eh+Z(€) 3 (€)h£<zgl,...,zgé;1>z),
1<i1 <--<im<n /=1 1<i1 < <p<n

(the so-called Hoeffding decomposition with respect to Pz).

Notation. The cardinality of a set S is denoted as card(S) and its complement as S¢. We
use = to denote uniform convergence of functions The cumulative distribution function and
probability density function of the univariate standard normal distribution are denoted by ®

and ¢, respectively. Let || X||.- := (E|X]|")"/" stand for the L™-norm of a random variable X.
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We use —— to denote convergence of random variables in the r-th mean. For random vectors
X,, X € R, we write X,, — X if | X, —X|| 5 0. Let (X, A) be a measurable space, and
let P and Q be two probability measures on (X, A): we write P < p and Q < p if P and Q
are absolutely continuous with respect to a o-finite measure p on (X, .A). The total variation

and Hellinger distances between Q and P are denoted as TV(Q, P) := sup 4. 4 |Q(A) —P(A)]
and HL(Q,P) := {[2(1 — \/dQ/dP)dP}'/2, respectively. We write Q™ <P for “Q™ is

contiguous to P,

B.1.1  Proofs for Section 3.2

B.1.1.1  Proof of Propostion 3.2.1

Proof of Propostion 3.2.1. The proof is entirely similar to the proof of Proposition 2 in Weihs
et al. (2018) and hence omitted. O
B.1.1.2  Proof of Example 3.2.1

Proof of Ezample 3.2.1. Ttem (a) is stated in Bergsma and Dassios (2014, Sec. 3.4). Item (b)
is given in Weihs et al. (2018, Proposition 1). Item (c) can be proved using Equation (3)
in Zhu et al. (2017). Items (d) and (e) can be proved using Proposition D.5 in Kim et al.
(2020c) and Theorem 7.2 in Kim et al. (2020b), respectively. O

B.1.1.8  Proof of Lemma 3.2.1

Proof of Lemma 3.2.1. Provided that E[f,] and E[fs] exist and are finite, we have

E [k'ﬁ,fz,H;” ((Xlla Xo1)s ooy (X, X2m)>}

= E{ ngn(o)fl(Xmu) ooy, Xig(m }{ Z sgn (o) fa( Xas (1), - - - ’X%(m))}

c€eH ceH

- E{fl(XllaX127X137X147X157 L Jle) - fl(X117X137X127X147X157 LR Jle)
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- f1<X147 X127 X137 X117 X157 s 7X1m) + fl(X147 X137 X127 X117 X157 s 7X1m)}
X {f2(X217 X227 X237 X247 X257 s 7X2m) - f2(X217 X237 X227 X247 X257 s 7X2m)

- f2<X247 X227 X237 X217 X257 s 7X2m) + fQ(X247 X237 X227 X217 X257 s 7X2m)}'

The result follows. O

B.1.1.4 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. The D-consistency of the pairs of kernels used in Example 3.2.1(a)
has been shown in Székely et al. (2007, Theorem 3(i)), Lyons (2013, Theorem 3.11) and
Lyons (2018, Item (iv)). The result for 3.2.1(b) is given in Weihs et al. (2018, Theorem 1),
that for 3.2.1(c) in Zhu et al. (2017, Proposition 1(i)), and that for 3.2.1(d) and 3.2.1(e) in
Kim et al. (2020b, p. 3435). O

B.1.1.5 Proof of Lemma 3.2.2
Proof of Lemma 5.2.2. The lemma directly follows from the definition of py, r, g (cf. Defini-
tion 3.2.1) and the fact that f; and f, are both orthogonally invariant. O

B.1.1.6  Proof of Proposition 3.2.2

Proof of Proposition 3.2.2. To verify that the kernels used in Example 3.2.1(a),(c)—(e) are
orthogonally invariant, it suffices to notice that Ow — Ov = O(w — v), (Ow) (Ov) =
w'OTOv = w'v, and ||Ow|| = Vw'w = ||w|| for any orthogonal matrix O € R**¢ and

w,v € R% O
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B.1.2  Proofs for Section 3.4
B.1.2.1  Proof of Proposition 3./.1

Proof of Proposition 3.4.1. The first part is trivial. We next prove the second part. The

function u — (Fx_Ql(u))l/ ? is continuous over [0,1), and
d

/01 ((F21(u))1/2)2du — /01 F3 (u)du = BIF (V)] = d,

Xd Xd

where U is uniformly distributed over [0, 1], and thus FX’;(U ) is chi-square distributed with
d
d degrees of freedom and expectation d. Hence, J, 4w (1) is weakly regular; it is not strongly

regular, however, since it is unbounded. O

B.1.2.2  Proof of Proposition 3.4.2

B.1.2.2.1 Proof of Proposition 3.4.2(i)

Proof of Proposition 3.4.2(i). This follows immediately from Proposition B.2.1(iv) and the
independence between [Gg"i)(X 1)), and [ngi)(ng)]?zl under the null hypothesis. O

B.1.2.2.2 Proof of Proposition 3.4.2(ii)

Proof of Proposition 3.4.2(ii). The desired result follows from combining Lemma 3.2.2 and
Proposition B.2.1(iii). ]

B.1.2.2.3 Proof of Proposition 3.4.2(iii)

Proof of Proposition 3.4.2(iii). We only prove the D-consistency part. Using Lemma 3.2.1, it
remains to prove that the independence of Gy .(X;) and Gy, (X>) implies the independence
of X, and X,. Notice that F, is P-almost surely invertible for any P € P3¢ (Ambrosio et al.,
2008, Section 6.2.3 and Remark 6.2.11), and so is G.. The independence claim follows. [
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B.1.2.2.4 Proof of Proposition 3.4.2(iv)

Proof of Proposition 3.4.2(iv). The main idea of the proof consists in bounding ]WL") Wl
Let Y ) and Y,.; stand for Gk j[(Xm) and Gy . (X},), respectively. Notice that

W =0 Y ks (VX)L (0 Y )
WleJQal‘«fl,fQ,H = (n);nl Z kf17f2,H<<l/1i17 1/21'1)a ) (}flimv Yéim))’

where

kfl,fg,H((CUll’ 3321)7 cee (wlm, 502m)>

{ngn fl Li5(1)s -+ Llo(m) }{ ngn fQ m20(1)7-‘-7w20(m))}-

oceH oceH

Since fi([Y, k(z )] 7)) and fi([Yki,]j2,) are almost surely bounded by some constant C, 7, , we

deduce

‘kfhme ([(1/1(172)7 ESZU]?:I) - kfl f2,H ([(}flle’ Y2%e>]7;:1> ‘

< card(H)-Cy, y, - Z‘ﬁ( 20”)@ 1> f2<[Y2m Jie 1)‘

+card(H) - Cy, 4, - Z

ceH

RS0 = (Wil |
recalling that card(H) denotes the number of permutations in the subgroup H. Moreover,

(n) _
~ J1,Joslf o H WJ17J27Mf1vf2»H

<card(H)*  Cy, 4, - [(n);l Z

[il ~~~~~ im GIZ;L

Feard(H) - Cpppy- () 30 AT = A (i) || 2% 0

AGZRENAG AN
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This, together with the fact that Wy, j, 4/ ;. 4 2% 1. (X1, X,) by the strong consistency of

.. . (n) ass.
U-statistics, yields le P pe (X, Xo). O

B.1.2.3  Proof of Theorem 3..1

We first fix some notation and prove a property that will hold for all GSCs p and associated

kernel functions considered in Example 3.2.1(a)—(e). For k = 1,2, let y(ﬁ) =J (uzgn) ), where

u’;g”’, i € [n] are the deterministic points forming the grid &%. Writing Y;: and Yy,

for G,(Q (X4i) and Gy o (Xy;), respectively, let us show that

= = sup [V - Vi 250, k=12 (B.1.1)

1<i<n

Recall that, by definition of strong regularity, J; is Lipschitz-continuous with some
constant Ly, strictly monotone, and satisfies Ji(0) = 0. Then we immediately have
|Jk(u)] < Ly for all w € [0,1), and thus Y(.n ) and Yj; are almost surely bounded by

”(n) 2% 0, it suffices to show that

Ly. Aslong as Px, € Pd , in order to prove that =
[Tk (wn1) = Tn(wr2)|] < 2Lg[lupy — wgol| for any wp, upy € R% with [lug ], [|usef < 1. With-
out loss of generality, assume that ||ugs| < ||wgi|]. If |Juge|| = 0, the claim is obvious by

noticing |Jg(u)| < Lyu for u € [0,1) and then ||Jx(wg1)|| < Li||ug||; otherwise we have

‘ + HJk(HUkQHUm) - Jk<uk2)

[oosy|
Ji([[wrzl]) ‘ ez |
[ozey] [z
[[wrz

[l

190 ) — Tuas)] < [[3nGar) — 3 (122, )

[ |

= elsall) = Ji(lfwea])| + i — o

< Ll | = ol + L 12 s = wia | < 2Lalwss — well.

This completes the proof of (B.1.1).

B.1.2.3.1 Proof of Theorem 3.4.1 (h = hyc.,2)
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Proof of Theorem 3.4.1 (h = hycoy2 ). Recall that

oV 1 oV
P ([wilizy) = Gllwr = wo]| - and - f55 ([ 1)——||w1—wz||,

with possibly different dimension for the inputs. Now, 2|\Yk£) Y}C(ZZ)H and 1||Yii, — Yis, ||

are almost surely bounded by Ly, since Yk(ln) and Yy; are. Next,

L
SV ¥ = ¥, — Vi

]_ n 1 n n
< SV =Y |+ 5 1%8 — Y| < sup [V — Vi
1<i<n
and we deduce that

_ n 1 n .S.
(it >, ‘QHle) v - §||Ykz‘1 — Yi||| < liljgnHYk(i =) 0.
Both conditions in (3.4.4) are satisfied, and the proof is thus completed. O

B.1.2.3.2 Proof of Theorem 3.4.1 (h = hy,)

Proof of Theorem 3.4.1 (b = hyr). Recall that fM([w;]i,) = f37([w],) = 11 (wy, wy =
ws ), up to a change in input dimension for the two functions. It is obvious that fk({Yk(Z)}}?lzl)
and fj,({ Y, }}>,) are almost surely bounded. Next we verify the second condition in (3.4.4).

We have for k =1,2
)11(1/(.”) Y < V) — 1V, Vi < Vi) | < 1(BE, i

ki1 0 T kis —

where

Brivisinini = { IV = Y0 = 257, v - v7) > 25},

ki >

st > Y 2 YY)~ (Y, Vi, = i)

< ()3 eard{[ir, iz, is] € I3 [V = v | <2E0 or ¥V - v <25}



= ()3 card{[ir, iz, 5] € I3 : |1yl — i)l < 25

which complet

es the proof.

(n)

B.1.2.3.3 Proof of Theorem 3.4.1 (h = hp)

Proof of Theorem 3.4.1 (h = hp). Recall that fP([w;]3)

Wws5, Wy — 'w5),

y (Wm
kip

fe([Y,

n (3.4.4), we start by bounding the difference between Arc(Yk(Z)
- }fkiz)a Ykig -

Arc(Yii,

For k = 17 2a consider (ykla yk2>yk’5) €

min{||yg

Yki5)‘

- yk5”7 Hyk2 -

Yyisl|} > 1 and ¢ < Arc(yp

where 7 and ¢ will be specified later on. For (¥}, Yre, Yis)

fori=1,2,5,

and

Assuming that

Arc(ykl — Y5, Yk1

Arc(Yi1 — Yiss Vi
Arc(ykz — Y5, Yk2

Arc(Yr2 — Ykss Yro

(R%)3 such that

— Y5, Yk2

= f7([will-)

up to a change in input dimension for the two functions.

kis

— Yis) <

159

or [yl — wiill < 25"} =50,

(B.1.2)

]

= JArc(w; —

Obviously,

172y) and fi([Ys,]72,) are almost surely bounded. To verify the second condition

_ Y(Tl) nz2

Y( )) and

l\')l»—t

€ (R%)3 satisfying ||yr — ;|| < 6

1
— Yp5) < 5 arcsin Nyrs — sl
2m lyr1 — yrsl| —
Lo lye — yll
/ k1
— Yis) < — arcsin ——
o o Y — sl
1 oy
— Yi5) < 5 arcsin Nyrs — sl
27 lyre — Yrs||
Loy — ol
/ k2
—Yyps) < — arcsin — =+
Yo sz — s
1 ‘ ‘
— (2 arcsin — + 2 arcsin ) <,
m 1 —

— arcsin
™

1

l\D

< — arcsin ——
2

1

< — arcsin

2T
1

< — arcsin
2

J

n’

?

n—20
0

n’

n—0

(B.1.3)
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we obtain

1 .0 .0
|Arc(Yr1 — Yrs, Yk2 — Yks) — Arc(Yiq — Yiss Yo — Yis)| < o (2 arcsm; + 2 arcsin - 5).

For § < 1/4, take 7 = /8 and ¢ = 3v/6/2 such that (B.1.3) holds,

” nf(S) = 217T (2 arcsm\/_+2arcsm :/3\/3>

g%(Zarcsin\/g+2arcsin2\/5) ( \/_+2 (2\/_)>=g\/5:§

1
— <2 arcsin — + 2 arcsin
T

It follows that for § < 1/4 and (Yr1, Yz, Yks): (Yi1s Yk Yis) € (R¥*)? such that

) 3 1 3
mm{Hykl - yk5||, ||yk2 - yk5||} > \/5, 5\/5 < Arc(Yr1 — Yiss Yn2 — Yks) < 5 5\/5,

and lyre: — Yl <6 fori=1,2,5,

we have
! ! ! / 3\/_
|ArC(yk1 — Yi5, Yk2 — yk5) - A"C(ym — Y5 Ygo — yk5)‘ < 5 J.
Then, for k£ =1, 2,

‘Arc l/;c(zn) o Y;c(zn)7 Y}{:(ZTQL) - Y(n)) - ArC(Yl-fil - }/kim lfkig - Yiﬂs)

3 / 1 1 3
Ak7i1»i2yi37i4:i5> <§ + 2) (Ak,i1,’i2,’i3,i4,i5) — 2 + ]I(Ak:,il,iz,ig,i47i5)

Absis in i iasis = {‘—‘k) < 7 ||Yk(z-1) m5 VN> /2N, ||Yk(ig) - zﬂg, Y > VEL S

3 —n n n n n 1 3 —(n
and S\/= < AV - YD Y v < 5 - D/
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and, accordingly,

1 n n n n 1
M5 Y |GAms) - Y Y - YY) - SAr(Yii, — Vi, Yii, — Y

kis
[i1,...,5] €T
L3 J=m =) _ 1
< —(=y\/Z ]l{: —}
= 2(2 SRR E

+ ()5 reard{ [in, iz, is] € 1 < 1G5 = Y2l < 2, or Y8 - B2l < /=,
(n) (n) () (n) 3 /=) L3 /o 1
or ArC(Ykil _Ylm's inz _Yki5 ) € [075 =k )U <§_§ = v§]}>
3 /=) =) _ 1
(5 = —i—]l{:k > Z}
+ ()5 eand{[in, i, ) € 13 < [yt =y | < /= or [yl -yl < /2L,

(n) _ () (n) _  (n) 3 [—(n) 1 3 [ 1
or AI’C(yk:il “ Ysis> Yriy — yki5) € [0,5 = ) U (5 — 5V 75] })

(B.1.4)

1
2

Since, for any sequence [6(™]>; tending to 0, it holds that

(n)y " card{ [ir, iz, is] € 13 < lyfi) =yl < VU, or |yl -yl < VaU,

or Arc(y,iif — yz(ng,)vyz(nz) — y,(ﬂg) € [O, 3 5 )) U (5 — 5\/5( ), 5}} — 0,

we have shown that (B.1.4) converges to 0 almost surely. This completes the proof. n

B.1.2.3.4 Proof of Theorem 3.4.1 (h = hg, h.+)

Proof of Theorem 3.4.1 (h = hg, h,+). The proof is similar to the proof of Theorem 3.4.1
(h = hp) and hence omitted. O
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B.1.3  Proofs for Section 3.5
B.1.3.1  Proof of Proposition 3.5.1

Proof of Proposition 3.5.1. In view of Lemma 3 in Weihs et al. (2018), the claim readily
follows from the theory of degenerate U-statistics (Serfling, 1980, Chap. 5.5.2). n

B.1.3.2  Proof of Theorem 3.5.1

Proof of Theorem 3.5.1. For k = 1,2, let PSZ?dk and P, 4, denote the distributions of W,
and Wpy, respectively, and let again Y}fzn) and Y}; stand for chni)(XkZ) and Gy . (Xy),
respectively. Consider the Hoeffding decomposition

m -1
n m n 7 n n n n n n
WL) = Z (6) (6) Z hu,@((}/l(ll)7yé(ll))77(Y.1(7,e)7‘Y.2(”LZ))7P‘(]1?d1 ®P82?d2>7

(=1 1< <--<iy<n

N

d,,
(B.1.5)

(n

of WL") with respect to the product measure P Jl)dl ® PSZ)dQ and the Hoeffding decomposition

m —1
WN = Z (?) (Z) Z ’Eu,é((Yliu }f2i1)7 SRR (lfliea }/v?ie); PJl»dl ® PJ2vd2> :

/=1 1<i1 < <ip<n

an,z
(B.1.6)
of W, with respect to product measure Py 4, ® P, 4,.
The proof is divided into three steps. The first step shows that nH = nH,; = 0,

the second step that nﬂn 5 — nH, s = op(1). The third step verifies that ”[jne and nH, g,

¢ =3,4,...,m all are op(1) terms.

Step I. Lemma 3 in Weihs et al. (2018) confirms that

hlhl('; Pf]?dl & PSIZ?dg) 0= hlt,l('; PJ1,d1 ® PJ27d2)7
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and thus nf | =nH,; =0.

Step II. Lemma 3 in Weihs et al. (2018) shows that,

m T n n n n
(2) “hyo ((ylh Y21), (Y12, Y22); Pfh?dl ® sz?da) = 95 )<y11, y12)9§ )(ym, Y22),

m ~
and (2) : hu,2 ((ylla y21); (’!/12, y22); PJl,dl & PJ2,d2> = gl(yn, y12)92(y21, y22),

where gk ) and g, are defined in (3.5.5) and (3.5.2). To prove that nH , —nH,s = op(1), it

n,2
suffices to show that

El(nH, ,~ nH,2)*]

1 o n
=B[( =g X e v -
(i.5)€l3 ( =

= o(1). (B.1.7)

2
}/‘1“ }fl] 92(Y27,7 Y2j)> ]

We proceed in three sub-steps.
Step II-1. The theory of degenerate U-statistics (cf. Equation (7) of Section 1.6 in Lee

(1990)) yields that
E[(an,Q)z] = %E[gl(Yn,Ym)ﬂE[Qz(YzhY22)2}- (B-1-8)

Step II-2. We next deduce that

]' n n n n ]'
B[ 3 " Y W0 ) (s Y (Y i) (Y, Ya))|

— n—1 =
(1,9)€13 (i,5)€l]

— 2E[g1(Y11, Y12)*| E[ga(Yar, Y22)?]. (B.1.9)
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By symmetry, we have

E[g (%, V) g (Yia, Yiy)] =

E[g (Y, Y0 gk (Yii, Yiy)] =

B[t (Y5, Y ) (Vi Yig)] =

for all distinct ¢, 7, ¢, r, and also

AP = B[g" (Y, Y5 0k (Yaa, Yio)] (B.1.10)
A;") + (n — 2)B](€”) — E[g](gn)<Yk(1n)7 lfk(gn))gk<Yk1, Y;Q)} + Z E[g’(gn)(n(en)’ Y;gl))gk(n% ifk?)}
L0#£1,2
— B[ v, (v Y _—_—
(9" (Y, Vi) gk (Yaa s Vo) (B.1.11)

2B + (n —3)C" = B! (V8 Vi) gk (Yia, Yio)] + E[0” (Y5, Y5 gk (Yaa, Yia)]

+ > EBlg (VS V) gk(Yia, Yie))]

0:04£1,2,3
= — Bl (%5, Y5 g (Yaa, Vi) (B.1.12)

We claim that
A = Elgr(Yia, Vi), (B.1.13)
A,g") + (n— 2)B,(€n) — — E[gx(Yaa, Ya2)9r(Yi1, Yia)] = 0, (B.1.14)
2B + (n — 3)C" = — E[gx(Yis, Yas) gk (Yir, Yao)]| = 0. (B.1.15)

We only prove (B.1.13), as (B.1.14) and (B.1.15) are quite similar.
If Condition (3.5.6) holds, we obtain, since E[ f([Wi;,]72,)?] < oo, that

96 (Yier, Ya2)|lr < ||l gk (Y, Yao) ||z < oo.
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To prove (B.1.13), we still need to show that Y}fln) L Y).; for k = 1,2. Since the scores Ji,

k = 1,2 are weakly regular (cf. Definition 3.4.2) and square-integrable, we obtain
. I el T -
it D2 () = [

and thus E||Y,("||2 — E||Y4|/%. Notice also that Y.\ 2% ¥}, Using Vitali’s theorem

(Shorack, 2017, Chap. 3, Theorem 5.5) yields || Y, — Y|z — 0.

Because g\ (Yx1, ko) =3 gr(Yr1, Yra), we have

Elg” (Y, Y5 — ae (VS V5] (Vi Yio) ]

< gV Y5 — g (B, Y5 e - (|9 (Yir, Yao)[|ux — 0. (B.1.16)

2
Next, since g is Lipschitz-continuous, by the fact that Yk(in) L Y.

E[lgr(Y, Y5) — g1 (Yir, Yao)| - 9k (Yia, Yio)]

< g (Y5, Y59 = 01(Yar, Yao)[|iz - (98 (Yar, Yao) |2 — 0; (B.1.17)

Combining (B.1.16) and (B.1.17) yields (B.1.13).
Having established (B.1.13)—(B.1.15), we obtain that

A = Elg(Yia, Yeo)’l, B =0(m™") and " =o(n™). (B.118)

Plugging (B.1.18) into the left-hand side of (B.1.9) gives

]‘ n n n n n n 1
B[(—— X a"@ v v Y (- Y (¥ Yi)g(Yai Vay) ) |
(i.4)€ly (i,5)ely

—1 n) 4(n n n Moy
_nln ){2A§ VALY +d(n — 2)BIBY” + (n — 2)(n — 3)C{" Cs )}

- (n—1)2
— 2K [91(Y11, Y12)2} E [92(Y21, Y22)2]

This completes the proof of (B.1.9).
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Step II-3. In order to prove (B.1.7), it remains to show that
E[(”Eng)Q] — 2E[g1(Y11, Y12)* | E[g2(Ya1, Ya0)?]. (B.1.19)

Notice that nH{ , is a double-indexed permutation statistic. Applying Equations (2.2)-(2.3)

in Barbour and Eagleson (1986) yields E[nH ] = npd™ S and

n? 7'1*1 gl) ’ ?:1 2(?) ?
Var(nl, ;) = 1;13(71—2)2 (ZZ ic } ><Z ié } )
b2 (Z#{niz?}?) (z#j{né;?}?)’

n(n —1) n(n —1)

where for k =1, 2,

= ———3" g ),
n(n —1)
275]
&= Wl u) - e}
JijFe
(n) (n)
(m) . () oy Sk Chj (n)
Direct computation gives
ﬂl(cn) = n(n — 1 ng ym »ym )»
151' = — O )(ym 7y1m Zg yk] »yk] )»
(n) (n) (n) (), (n)  (n)
) ) oy 9n WU ) 9k Wy Yk )
nl{;zj_gk (yz 7y] )+ n_2 + n_2 _<n_1 ng ykn,?ykz )

Moreover, we can write E[nH n,Z] and Var(nH, ,) in terms of Y, and YV:

B[t ,] = Bl 0n Y B[ (v, v
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Var(nfl, ) = gy =gy Ve Lo (L YY) Var [ (9, Yol
n g(n)<Y(n), Y(n)) g(") (Y(n), Y(”))
—i—n_SVar [ggn)(}q(ln)7n(2n))+ 1 n11_2 u) 9% n12_2 12 }
R ZOR ZONENORVORE
% Var [gén)(l’;(l"),l’;(gn))JrgQ (n21_ 72 21 )+92 (n22_72 22 )]_

Using once again Condition (3.5.6), and by a similar argument as in the proof of (B.1.13),

we obtain

E[TLH } — (HLQEL%(YM,Yll)}E[gz(Yzl,Yzl)] — 0, (B.1.20)

~ n,2 _ 1)
4n?
(n—1)3(n —2)?

Var(nf;]n,g) — Var [gl(Ylh Yn)] Var [92(Y21, Y21ﬂ

91(Y117 Y11) i 91(Y12, le)]

2n
+ —— Var [91(1’11, Yi) +
n—3

n—2 n—2
Y5, Y Y, Y:
x Var [QQ(Y%YM)_’_QQ( 21, Ya1) +92( 22 22)]
n—2 n—2
— 2E[g1(Y11, Y12)*| E[ga(Yar, Y22)?]. (B.1.21)

Combining (B.1.20) and (B.1.21), we deduce that (B.1.19) holds.

Finally, Step II is completed by combining (B.1.8), (B.1.9), and (B.1.19) to deduce
(B.1.7).

Step IIL. Notice that sup;, ;g B[fe((WiiJ721)?] < co. Proving that E[(nﬂngﬂ =
o(1) for £ = 3,4,...,m goes along the same steps as the proof of Theorem 4.2 in the
supplement of Shi et al. (2021a); it is omitted here. The fact that E[(nH,,)?] = o(1),
¢ =3,4,...,m follows directly from the theory of degenerate U-statistics (cf. Equation (7)

of Section 1.6 in Lee (1990)). The proof is thus complete. O
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B.1.3.3 Proof of Theorem 3.5.2

Proof of Theorem 3.5.2. The proof is similar to that of Theorem 3.5.1. The only difference
lies in proving (B.1.13)—(B.1.15) and (B.1.20)—(B.1.21). By the continuous mapping theo-
rem (van der Vaart, 1998, Theorem 2.3) and the Skorokhod construction (Shorack, 2017,
Chap. 3, Theorem 5.7(viii)), we can assume, without loss of generality, that Wk(ln ) 2% W,
If Condition (3.5.7) holds, then (B.1.13) immediately follows from the dominated convergence
theorem and the definitions of g,(gn) and g in (3.5.5) and (3.5.2). The proofs for (B.1.14),
(B.1.15), (B.1.20), and (B.1.21) are similar. O

B.1.3.4  Proof of Proposition 3.5.2

B.1.3.4.1 Proof of Proposition 3.5.2 (h = hycy.2)

Proof of Proposition 3.5.2 (h = hycoe2). Condition (3.5.1) is obvious. Condition (3.5.4) is
satisfied in view of Theorem 5 in Székely et al. (2007). We next verify that condition (3.5.6)
(n)

is satisfied. To do so, let us first show that ¢, (yr1, Yr2) = 9x(Yk1, Ys2) for k = 1,2. By
definitions (3.5.2) and (3.5.5),

0" (g yr2) = |y — el — Ellyss — W - WY — yio|l + E[WS — W,

and  gx(Yr1, Yk2) = |Yk1 — Yn2ll — Ellyrr — Wisl|| — E[| Wi — yiz|| + E|| Wiy — Wis]].

Noting that J, k = 1,2 are continuous, we can assume, as in the proof of Theorem 3.5.2,

that W,iln ) 22 Wi;. Since the scores J, are square-integrable, we obtain that EHW,C(ZL)H2 —
2

E||W;||?. Using Vitali’s theorem (Shorack, 2017, Chap. 3, Theorem 5.5) yields Wk(l") N

W.i. Therefore, we obtain

[Bllgis = Wl = Bllyss — Wisl| < BIW — Wig].

[BIW, — yioll — Bl Wis — yio| < BIWY — Wi
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BIW = Wl — B[ Wii — Wis| < BIW,S — Wigl| + E[W,Y — Wil

and, furthermore,

’glgzn)<yklayk2) — gk (Y1, Yr2) | < 2<EHW1§§L) — Wi + EHW’f(Z) B Wk4”>’

(n)

The uniform convergence ¢, (Yr1, Yr2) = 9x(Yk1, Yi2) follows. It is obvious that gy (yk1, Yre)
is Lipschitz-continuous, and E[fy(Wi,, ..., Wy;,)?] < oo for all i, ..., iy € [4] as long as

Ji1, Jo are weakly regular. O

B.1.3.4.2 Proof of Proposition 3.5.2 (h = hy, hp, hg, h.+)

Proof of Proposition 3.5.2 (h = hyr, hp, hgr, he+). Condition (3.5.1) is obvious. Condition
(3.5.4) is satisfied for hp by Theorem 3(i) in Zhu et al. (2017). For h = hy, hg, h.-, we
can prove condition (3.5.4) holds as well in a similar way. It is clear that condition (3.5.7) is

satisfied for all these four kernel functions. ]

B.1.3.5  Proof of Corollary 3.5.1

Proof of Corollary 3.5.1. Combining Proposition 3.5.1 and Theorem 3.5.1, one immediately
obtains the limiting null distribution of the rank-based statistic WL”) O

B.1.3.6  Proof of Proposition 3.5.3

Proof of Proposition 3.5.3. Validity is a direct corollary of Corollary 3.5.1. Uniform valid-
ity then follows from validity and exact distribution-freeness. For any fixed alternative in

Pie it holds that WL”) 2% (X1, X5) > 0 as n — oo. Thus, nWL") 2% 50 and the

d1,d2,00?

result follows. O
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B.1.3.7 Proof of Theorem 3.5.3

Proof of Theorem 3.5.3. Let X}, and X,;, i € [n] be independent copies of X* and X with
§ = 6™, respectively. Let P = ®?:1PZ(.”), QMW = ®?:1Q§n), where PE”) and Qg”) are the

distributions of X, and X,,;, respectively. Define

dQ™ - gx (X556™)
(n) .__ _ ni’ (n) _ .
A" = logc1 Ol ;1 log X (X0 and T0W .= s E ((X750).

nv’

We proceed in three steps. First, we clarify that Q™ is contiguous to P®™ in order
for Le Cam’s third lemma (van der Vaart, 1998, Theorem 6.6) to be applicable. Next, we
derive the joint limiting null distribution of (nWL"), AT Lastly, we employ Le Cam’s third
lemma to obtain the asymptotic distribution of (nI/NVL”), AM)T under contiguous alternatives.

Step I. In view of Lehmann and Romano (2005, Example 12.3.7), Assumption 3.5.1
entails the contiguity Q™ a P,

Step II. Next, we derive the limiting joint distribution of (nWL”), A™)T under the null
hypothesis. To this end, we first obtain the limiting null distribution of (nH,, o, T™)T, where
H, 5 is defined in (B.1.6). By condition (3.5.1), we write

Hn,Q == n(n — 1 ZZ)\M% mz>if21)wv<Y1]a Ej)

1#] v=1
where 1), is the normalized eigenfunction associated with A, and Y;; = Gj | (X;,) for k =1,2.

For each positive integer K, consider the “truncated” U-statistic

Hn,Q,K = ZZAvwv lez;%z)djv(lfljayv%)

n(n—l
i#j v=1

Note that nH,, » and nH, 2 x can be written as

_1{2/\ <Z¢v Yy, Ya;) ) ZA ( i 1{1/11;(73/1z‘,Y22‘)}2)}’

anz—
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{Z)‘ (Zwv Yy, Yo) ) Z’\ ( 1 ( leaYQz)} >}

To obtain the limiting null distribution of (nH,., )T, first consider the limit-
ing null distribution, for fixed K, of (nH,sx,T™)". Let S,, be a shorthand for
nY23" b, (Yii, Yai) and observe that

an,Q,K =

E[S,.] =E[T™] =0, Var[S,,] =1, Var[T™]=7Zx(0), and Cov[S, ., T™] = 0.

where 7, := Cov [%(Ybl@%f(((}fi(y}),Ggi(Yg)),0)] There exists at least one v > 1
such that v, # 0. Indeed, applying Lemma 4.2 in Nandy et al. (2016) yields

{@/}v(y) }UEZ>0 = {¢1,v1 (y1)¥2,0,(Y2) }vl,vzeZ>o’

where ¥ ,(yr),v € Zso are eigenfunctions associated with the non-zero eigenvalues
of the integral equations E[gr(yr, Wi2)x(Wia)] = Metor(yg) for £ = 1,2.  Since
{1/}1’”1(y1)¢27v2(y2)}v1,ygez>o (where ¥y ,(yg) := 1 for v = 0, k = 1,2) forms a complete
orthogonal basis of the S(;t of square integrable functions, v, = 0 for all v > 1 thus en-
tails that ¢(a;0) is additively separable, which contradicts Assumption 3.5.1(iv). Therefore,

« # 0 for some v*. Applying the multivariate central limit theorem (Bhattacharya and

Ranga Rao, 1986, Equation (18.24)), we deduce

(n) Ox 1 dov
(Sn,la"wsn,KaT(n))TPN\_} (§17"'7£K7VK)TNNK+1(( >7( P ))a
0 50’UT (581-
where Z := Zx(0) and v = (71, ...,7x) . Thus, Vi can be expressed as

(581) 1/2{ i ot <1 B i c%) 1/250}
v=1

v=1

where ¢, := Z7Y?,, and &, is standard Gaussian, independent of &, ..., &x. Then, by the
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continuous mapping theorem (van der Vaart, 1998, Theorem 2.3) and Slutsky’s theorem

(van der Vaart, 1998, Theorem 2.8),

pn) [ 12 ¢ X K 1/2 T
(nHyz0c, T0)T %5 (Z ME =1, (87) Y ek + (1-3¢) 50}) (B.1.22)
v=1 v=1 v=1
for any K. This entails
P [ — 1/2 ¢ & s 1/2 T
(nH,y 5, T™@)T 25 (Z M€ - 1), (531) { Y b+ (1 -y c3> go}) . (B.1.23)
v=1 v=1 v=1

Indeed, putting
K 12 K K 1/2
Mici= > (€2 = 1), Viem (82) > et (1-3¢) "6},
v=1 1
M = 2 M€ 1),  and V= (531) 1/2{ icv@ + (1 - icz)mgo},

it suffices, in order to to prove (B.1.23), to show that, for any a,b € R,
’E[exp {iaan,Q + ibT(”)H _ E[exp {iaM + ibVH ‘ 0 asn— oo (B.1.24)
We have

‘E[exp {iaan,Q + ibT(”)H _ E[exp {iaM + ibv}] ‘
< ‘E[exp {iaan,g + ibT(")H — E[exp {iCLan’Q’K + ibT(")}] ‘
+ ‘E[exp { ianH, o 5 + ibT(")}] _ E[exp {iaMK + ibVK}] ‘

n ‘E[exp {iaMK n ibVKH . E[exp {iaM n ibV}” — [+ I+ 1, say,

where it follows from page 82 of Lee (1990) and Equation (4.3.10) in Koroljuk and Borovskich
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(1994) that

25 1/2 Mmad 1/2
I< E‘ exp {ian(Hyp = Hoz) | - 1‘ < {E’an(ng - Hn,QVK)‘ b= Y 2z}
n —

and

2}1/2

11 < B exp {ia(My — M) +ib(Vic = V) } = 1] < {E}a(MK ~ M) +b(Vg = V)

<fole 3 vz Y @)}

v=K+1 v=K+1

Since by condition (3.5.1)
2:/\2 Var (g1 (W11, Wha)) - Var(ge(War, Way)) € (0,00)  and ch =7! Zvﬁ <1,

we conclude that, for any € > 0, there exists Ky such that I < ¢/3 and Il < ¢/3 for all n
and all K > Kj. For this Ky, we also have, by (B.1.22), that II < €/3 for all n sufficiently
large; (B.1.24), hence (B.1.23), follow.

Now, as in van der Vaart (1998, Theorem 7.2),

p()

A 7™ 4 2T/ (B.1.25)

Combining (B.1.23) and (B.1.25) yields

00 o) 00 2 T
(n)\T PO 2 0\ /2 B 2\ /2 B 50_I
(nHy 2, AT)T (zma D, (9%7) chvm 1 E;cv f =5 ) -
Equation (1.6.7) in Lee (1990, p. 30), along with the fact that H,; = 0, implies that
(nWL"), AM)T has the same limiting distribution as (B.1.26) under P™.

Step III. Finally we employ the general form (van der Vaart, 1998, Theorem 6.6) of Le
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Cam’s third lemma, which by condition (3.5.4) entails

(nWL < qi-a)
SB[ ME - <o) e { (8) 7 (Das+ (1-306) "6) - 2]
v=1 v= v=1
< Bfufe < (B o (52) (St (103 ) ) -]
=sfiffe] = (=) oo {(8) " (oo + (1-6) ) - Y]

—o((Be B () ) (- (R e (22) )
<ot B (e () - (TR )

Ay
a quantity which is arbitrarily small for large enough 9y, irrespective of the sign of ¢,«. [

B.1.3.8 Proof of Theorem 3.5.}

Proof of Theorem 3.5.4. This result is a standard result connecting the Fisher information
to the usual lower bound of rate n~'/? (Groeneboom and Jongbloed, 2014, Chap. 6). Recall
that X*, and X,,;, i € [n] are independent copies of X* and X, respectively, with § = 6" =
n~128,. Recall P = ®?:1P§"), QM = ®?:1QZ(»"), where PE") and an) are the distributions
of X, and X,,;, respectively. It suffices to prove that for any small 0 < 8 <1 — «, there
exists |6y| = cg such that, for all sufficiently large n, TV(Q®™ P™) < B, which is implied
by HL(Q™, P() < B using the fact that total variation and Hellinger distances satisfy

TV(Q("), P(")) < HL(Q("), p(n))
(Tsybakov, 2009, Equation (2.20)). It is also known (Tsybakov, 2009, p. 83) that

1—

HL?(QM, PM) 2 HL?(Q™, P™)
-TI (1 . )
2 2

i=1
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Lehmann and Romano (2005, Example 13.1.1) shows that, under Assumption 3.5.1,

2
z
nx HLA(Q, P() - N0,

notice that here the definition of HL*(Q, P) differs with that in Lehmann and Romano (2005,
Definition 13.1.3) by a factor of 2. Therefore,

HI2(Q®, P)

1
2

_ 05Zx(0) }

— exp{ 3

The desired result follows by taking cg > 0 such that

exp{_c%IX(O)}:1_52

8 8

This completes the proof. O

B.1.3.9 Proof of Example 3.5.1

B.1.3.9.1 Proof of Example 3.5.1(i)

Proof of Example 3.5.1(i). We need to verify Assumption 3.5.2. Items (i) and (ii) are obvi-
ous. For (iii), following the proof of Lemma 3.2.1 in Gieser (1993), when X} and X are

elliptically symmetric with parameters 04,, 37 and 0g4,, 39, respectively, we obtain
E(:I;, 0) = —2(M1:c2)T21_1$1 * P1 (a:lTEl_lazl) — Q(Mzml)Tﬁgla}z * P2 <CB;—EZ_12B2> .

Consequently, the condition that E[||Z;]?px(||Z;||*)?] < oo for k = 1,2 is sufficient for
Ix(0) = E[é(X;O)Q} < 00. If Tx(0) = 0, then we must have

p1 (wlTEflw1> = p2 (szEElwz) =)
for some constant C, # 0 and

(Myzo) 'S 2y + (Maozy) ' 25 ey = 2] Z7H (ML B, + 2.M) )85 2, = 0
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for all &1, x5. This contradicts the assumption that ElM; + M; 3, # 0 and completes the

proof. O]

B.1.3.9.2 Proof of Example 3.5.1(ii)

Proof of Example 3.5.1(ii). For the multivariate normal, ¢x(t) = exp(—t/2) and pi(t) =
—1/2, so that all conditions in Example 3.5.1(i) are satisfied. For a multivariate ¢-distribution

with v, degrees of freedom,

Or(t) = (1+/v) @+ 2 and - p(t) = =27 (1 + dy/we) (1 + t/vp) 7
It is easily checked that all conditions in Example 3.5.1(i) are satisfied when vy, > 2; see
Gieser (1993, p. 44-46). O
B.1.3.10 Proof of Example 3.5.2

Proof of Example 3.5.2. Since ¢* is continuous and has compact support, it is upper bounded
by some constant, say C, > 1, and then Assumption 3.5.3(i) holds with §* = C’q_l. The rest
of Assumption 3.5.3 can be easily verified. O

B.1.3.11 Proof of Proposition 3.5.4

Proof of Propositiion 3.5.4. (1) Konijn family. It is clear that Assumption 3.5.1(i),(iii) is
satisfied. Gieser (1993, Appendix B, p. 105-107) shows that Assumption 3.5.2 implies As-

sumption 3.5.1(ii). To verify Assumption 3.5.1(iv), notice that

{(w:0) = —2(Myz) " (Var(@1) /(1)) — 2Moa)T (Vaa(@) /a(2))

following the proof of Lemma 3.2.1 in Gieser (1993).
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(2) Mixture family. Direct computation yields that

i(a: 6) = ¢ (z) — qi(®1)ga(w2) ‘
(1= 0){qi(1)g2(2)} + 6¢* ()
The rest directly follows from Theorem 12.2.1 in Lehmann and Romano (2005). [l

B.2 Auxiliary results

B.2.1 Auxiliary results for Section 3.2

The concept of GSC unifies a surprisingly large number of well-known dependence measures.
Moreover, only two types of subgroups are needed, namely, H™ := ((1 2)) = {(1),(1 2)} C
S, form=2and H" :=((14),(23)) ={(1),(14),(23),(14)(23)} € &,, for m > 4. The
following result illustrates this fact with four classical examples of univariate dependence
measures, namely, the tau of Kendall (1938), the D of Hoeffding (1948), the R of Blum et al.
(1961), and the 7* of Bergsma and Dassios (2014) which, as shown by Drton et al. (2020), is
connected to the work of Yanagimoto (1970). Below, we write w = (wy, ..., wy) — fr(w),
k = 1,2 for the kernel functions of an mth order univariate GSC; note that not all components
of w need to have an impact on f(w): see, for instance the kernel f; of the 6th order Blum—
Kiefer-Rosenblatt GSC, which is mapping w = (wy, ..., ws) to R>o but does not depend on
we (f2 does).

Example B.2.1 (Examples of univariate GSCs).
(a) Kendall’s tau is a 2nd order GSC with H = H? and
fi(w) = fo(w) = L(wr < w,) on R?,
which can be proved as follows:

tofy fom2( X1, Xo) = E[ky, 5 m2((X11, Xo1), (X12, X22))]
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= B{1(X1, < X12) — 1(X1o < X11)HIL(Xa1 < Xao) — 1(Xos < Xo1)}]

= E[sign(X11 — Xi2) sign(Xo — Xoo)] =: 75

see also Example 5 in Lee (1990, Chapter 1.2) for the last expression of Kendall’s 7;

b) Hoeffding’s D is a 5th order GSC with H = H? and
(b) g 5

filw) = fo(w) = %ﬂ(max{wl,wg} < ws) on RS

(c) Blum-Kiefer-Rosenblatt’s R is a 6th order GSC with H = H? and

fi(w) = %]l(max{wl,u@} < ws), fo(w) = %]l(max{wl,wg} < wg) on RS

d) Bergsma-Dassios—Yanagimoto’s 7 is a 4th order GSC with H = H* and
(d) Berg g h

fi(w) = fo(w) = 1(max{w;, ws} < min{ws,wy}) on R*.

Remark B.2.1. Distinct choices of the kernels f; and f, do not necessarily imply distinct
GSCs. For example, Weihs et al. (2018, Proposition 1(ii)) showed that Hoeffding’s D in
Example B.2.1(b) is a 5th order GSC with H = H? also for

filw) = fo(w) = %]l(max{wl,wg} < ws < max{ws,wy}) on R;

similarly, for Blum—Kiefer—-Rosenblatt’s R, the kernels in Example B.2.1(c) can be replaced
with

1
fi(w) = 5]1(11’1&)({?1)1,11]2} < ws < max{ws,wy}) on R

1
fo(w) = i]l(max{wl,wg} < wg < max{ws,wy}) on RE.
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B.2.2  Auxiliary results for Section 3.3
The next proposition collects several properties of center-outward distribution functions.

Proposition B.2.1. Let F. be the center-outward distribution function of P € Pi°. Then,

(i) (Hallin, 2017, Proposition 4.2(i), Hallin et al., 2021a, Proposition 2.1(i),(iii)) Fy is a
probability integral transformation of R, namely, Z ~ P if and only if F.(Z) ~ Uy;

(i1) (Hallin et al., 2021a, Proposition 2.1(ii)) if Z ~ P, |F.(Z)| is uniform over [0,1),
F.(Z)/|F+(Z)| is uniform over the sphere Sq_1, and they are mutually independent.

Writing FZ for the center-outward distribution function of Z ~ P € P,

(iii) (Hallin et al., 2020, Proposition 2.2) for any v € R% a € Rsg, and orthogonal d x d

matriz O,

FvT9%(y + a0z) = OF%4(z2) for all z € R™.

Letting Z,, ..., Z, be independent copies of Z ~ P € Pi° with center-outward distribution

function F,

() (Hallin, 2017, Proposition 6.1(ii), Hallin et al., 2021a, Proposition 2.5(ii)) for any
decomposition ng,ng,ng of n, the random vector [F(i")(Zl), o ,F(i")(Zn)] is uniformly

distributed over all distinct arrangements of the grid &2 ;

(v) (del Barrio et al., 2018, Proof of Theorem 3.1, Hallin et al., 2021a, Proof of Proposition

3.3) as ng and ng — oo, for every i € [n],

a.s.

HF@(ZZ-) ~F.(z)|| 20

Proof of Proposition B.2.1. We give an independent proof of part (iii). In view of Definition

3.3.1, there exists a convex function ¥ such that FZ = VW. It is obvious that Fvte9Z
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defined implicitly by
Fv19Z (y 1+ a0z) = OF%(2),

satisfies (ii) and (iii) in Definition 3.3.1. It only remains, thus, to construct a convex function
U* such that Fv+20Z = V¥*. Noting that F*t9%Z(2) = OFZ(a 'O~ !(z — v)), it is easy
to check that z — U*(2) := a¥ (a'O~!(z — v)) is convex, and thus continuous and almost

everywhere differentiable, with VU*(v +a0Z) = OVV¥(z). O

Proposition B.2.2. (Hallin, 2017, Proposition 5.1, del Barrio et al., 2018, Theorem 3.1,
del Barrio et al., 2020, Theorem 2.5, and Hallin et al., 2021a, Proposition 2.8) Consider the

following classes of distributions:

e the class P of distributions P € P35 with nonvanishing probability density, namely,
with Lebesque density f such that, for all D > 0 there exist constants Ap,y < Ap.y €
(0,00) such that Ap.r < f(z) < Ap,s for all ||z|| < D;

e the class PS™ of distributions P € P with convex support supp(P) and a density that
is nonvanishing over this support, namely, with density f such that, for all D > 0 there
exist constants Ap.y < Ap.y € (0,00) such that Ap.; < f(z) < Ap.y for all z € supp(P)
with ||z|| < D;

e the class P; of distributions P € P3° that are push-forwards of Uy of the form
P =VTYtU,; (VY the gradient of a convezr function) and a homeomorphism from the
punctured ball S4\{04} to VY (Ss\{04}) such that VY ({04}) is compact, convex, and

has Lebesque measure zero;

e the class ij of all distributions P € P3¢ such that, denoting by F(in) the sample distri-

bution function computed from an n-tuple Z1, ..., Z, of independent copies of Z ~ P,
)7\ _ Y
max F"(Z,)-F.(Z)|| =0

as ng and ng — oo (a Glivenko-Cantelli property).
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It holds that P} C Ps™ C P; C Py C Pie.

B.2.3  Auxiliary results for Section 3.4

The time complexity of computing the optimal matching and nearly optimal matchings is

summarized in the following proposition.

Proposition B.2.3. The optimal matching problem (3.3.1) yielding [Gg’?i)(Xu)]?zl and
[ngi)(ng)]le can be solved in O(n®) time via the refined Hungarian algorithm (Dinic and

Kronrod, 1969; Tomizawa, 1971; Edmonds and Karp, 1970, 1972). Moreover,

(1) if we assume that c;j, i,j € [n] all are integers and bounded by some (positive) integer
N, which can be achieved by scaling and rounding, then there exists an optimal matching

algorithm solving the problem in O(n®?log(nN)) time (Gabow and Tarjan, 1989);

(it) if d = 2 and ¢, 1,7 € [n] all are integers and bounded by some (positive) inte-
ger N, there exists an exact an optimal matching algorithm solving the problem in
O(n®?*%1og(N)) time for any arbitrarily small constant § > 0 (Sharathkumar and
Agarwal, 2012);

(111) if d > 3, there is an algorithm computing a (1 + €)-approximate perfect matching in
O (n3/26_17(n, €)log*(n/e)log (max c;;/minc;;))  time,

where a (14 €)-approximate perfect matching for € > 0 is a bijection o from [n] to itself
such that Y ;| Ciz() is no larger than (1 + €) times the cost of the optimal matching
and T(n, €) is the query and update time of an €/c-approximate nearest neighbor data

structure for some constant ¢ > 1 (Agarwal and Sharathkumar, 2014).

Once [ngi (X1;)], and [Géni)(ng)]?zl are obtained, a naive approach to the computation

of I/NV("), on the other hand, requires at most a O(n™) time complexity. Great speedups are
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possible, however, in particular cases and the next proposition summarizes the results for
the various center-outward rank-based statistics listed in Example 3.4.1.
Proposition B.2.4. Assuming that [Gg’i(Xli)]?:l and [Géfi(Xgi)]?:l have been previously
obtained, one can compute
(i) ngov in O(n?) time (Székely and Rizzo, 2013, Definition 1, Székely and Rizzo, 2014,
Definition 2, Proposition 1, Huo and Székely, 2016, Lemma 3.1)
(i1) W%}‘) in O(n(logn)® =1 time (Weihs et al., 2018, p. 557, end of Sec. 5.2),

(iv) I/NV? in O

(

(1i1) Wg) in O(n®) time (Zhu et al., 2017, Theorem 1),
(n*) time as proved in Section A.3.4 of the supplement,
(

(v) W(Tff) in O(n*) time by definition.
If, moreover, approximate values are allowed, one can compute

(i) approzimate ngov in O(nK logn) time (Huo and Székely, 2016, Theorem 4.1, Chaud-

huri and Hu, 2019, Theorem 3.1),

(i1) approzimate Wg) in O(nKlogn) time (Weihs et al., 2018, p. 557),

(iii) approzimate ng) in O(nKlogn) time (Drton et al., 2020, Equation (6.1), Weihs
et al., 2018, p. 557, Even-Zohar and Leng, 2021, Corollary 4),

(iv) approximate W(TCL) in O(nK logn) time (Even-Zohar and Leng, 2021, Corollary 4).

These approximations consider random projections to speed up computation; K stands for

the number of random projections. See also Huang and Huo (2017, Sec. 3.1).

Proof of Proposition B.2.4. We only illustrate how to efficiently compute U-statistic esti-
mates of Hoeffding’s multivariate projection-averaging D and Blum—Kiefer—-Rosenblatt’s mul-
tivariate projection-averaging R. The other claims straightforwardly follow from the sources

provided in the proposition.
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Zhu et al. (2017) showed how to efficiently compute a V-statistic estimate of Hoeffding’s
multivariate projection-averaging D. Let us show how to efficiently compute the correspond-

ing U-statistic. We define arrays (apsps)erscfn] for k= 1,2 as

Alprs = Arc(yk@ — Yks, Ykr — yks) if [67 T, S] € [2?7

Qpprs =0 otherwise.

Their U-centered versions (Apers)e,rscfn) for k= 1,2 are

1 & j— 1 -
rs — T 5 rs T o is K f f, ) € In7
Qe n—3;ak n—3;a%+(n—2)(n—3)za“ if [0, 7, s] € I}

ij=1

Akérs =

0 otherwise.

—1 1
(Z) Z hp ((yul, Y2ir )5 -+ -5 (Yis, ’y2i5)> = n(n— 1)(n — 4) Z Avers Aoprs,

i1 <--<ip [5%5]6];?

which clearly has O(n?) complexity.
Turning to Blum-Kiefer-Rosenblatt’s multivariate projection-averaging R, define, for

k= 1,2, the arrays (brerst)e,r,s tc[n] a5

bierst 1= ArC(yu — Yis,Y1r — yls) and byprst 1= Arc(yzg — Yot, Yor — yzt) if [f, s, t] S

biogrst == 0 and bgppgr := 0 otherwise.

Their U-centered versions (Birs)k,er,sc[n] for & = 1,2 are

( n n n

1 1 1
b rst — o birs_— b s b’LS
ktrst n—4;1 kirst n—4]§1 kéjt+(n_3)<n_4) g kijst

ij=1

Bitrst = if [0,r, s, t] € I},

0 otherwise.
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Then,

(Z) : Z hR<(y1i17 Y2ir )y - s (Ytig) y2i6)> = n(n— 1)(n1— %) —5) Z Biyrst Boerst,

s [t.rs L}

which clearly has O(n*) complexity. This completes the proof. O
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Appendix C
APPENDIX OF CHAPTER 4

C.1 Proofs

Throughout the proofs below, all the claims regarding conditional expectations, conditional

variances, and conditional covariances are in the almost sure sense.

C.1.1 Proof of Proposition 4.2.2 (£)

Proof of Proposition 4.2.2 (£*). Equation (21) in Dette et al. (2013) states that
By — Bay — Chy — Gy = op(n~'?),

but tracking a glitch in signs the equation should in fact be
By — Bap + Ciyy + Coy, = op(n~'"?).

Accordingly, a revised version of Equations (24)—(26) in Dette et al. (2013) shows that,

n

n (6~ ) = oy (7~ BZ) + on(1) (L)

=1

where Zz = Zz',l — Zi’Q — Zl"g with

Ziy = /01 ]l{FXQ <X2i> < U2}T(FX1 <X1i>,u2>du27

Zig = /01 /01 ]I{FX1 <X1i> < u1}7'<’u1,u2) %T(ul,ug)duldug,
1,1 9

Zis ::/0 /0 ]l{FX2 <X2i> SUQ}T(Ul,UQ)a_uQT(Ul,UQ)dUldUQ,
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T(uy,u9) = 0C(uy, uz)/0uy, and C(uy,us) is the copula of (X, X3). Since the first term on
the right hand side of (C.1.1) has finite variance (see computation on pages 34-35 of Dette
et al. (2013)), we deduce that

&2 e

n

This completes the proof. O

C.1.2  Proof of Proposition 4.2.4(ii)

Proof of Proposition 4.2.4(ii). Applying (C.1.1), it holds under the null that
Clur, ug) = urug, 7(u1, uz) = us.

Accordingly,

1 1 )
Zin = Ziz = / ]I{F)Q (X%) < UQ}UQdU2 =3 [1 - {FX2 <X2¢>} ] and Z;o =0,
0

which yields
n'2¢r 25 0. (C.1.2)

This completes the proof. O

C.1.8 Proof of Remark }.3.1

Proof of Remark /.5.1. Recall that fx(a; A) denotes the density of X with A. Denote

l(x; A) = 8% log fx(x; A).

These definitions make sense by Assumption 4.3.1(i),(ii), and we may write Zx(0) =

E[{/(Y;0)}?]. Notice that Y is distributed as X with A = 0. Since Y = AZ'X is an
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invertible linear transformation, the density of X can be expressed as
fx(a; A) = | det(An)| ™ fy (Ax'),

where fy (y) = fy(y1,92) = f1(y1) f2(y2). Direct computation yields

iw:0) =~ {pa(2)} ~ ea{n() }. 019

Thus E{(Yz)?} < oo and E[{p(Y3)}?] < oo for k = 1,2 will imply Zx (0) = E[{{(Y;0)}?] <
oo under the Konijn alternatives. Also, E[{px(Y:)}?] < oo implies that E{p.(Y%)} = 0 by
Lemma A.1 (Part A) in Johnson and Barron (2004). O

C.1.4 Proof of Example 4.5.1

Proof of Example 4.3.1. Assumption 4.3.1(i) is satisfied since fi(z) > 0, k = 1,2 for all real
z. Assumption 4.3.1(iii) holds in view of (C.1.3); notice that £(z;0) can never always be 0.
For Assumption 4.3.1(ii), if px(2) is constant, then fi(2) is either constant or proportional

©z with some constant C for all real z, which is impossible. Then Assumption 4.3.1 is

to e
satisfied.

Regarding the special case, without loss of generality, we can assume Y; and Y5 to be
standard normal or standard ¢-distributed. For the standard normal, we have py(2) = —t and

thus (4.3.2) is satisfied. For the standard ¢-distribution with v degrees of freedom, we have

pr(2) = —2(1+ 1/vg) /(1 + 22 /vy,). Tt is easy to check (4.3.2) is satisfied when v, > 2. O

C.1.5 Proof of Remark 4.3.2

Proof of Remark /.3.2. Let fx(x;A) denote the density of X with A. Denote

. 0
Ua; A) o= 5 log fx (@3 4),
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then we can write Zx (0) = E[{¢(Y;0)}?], where Y is distributed as X with A = 0. Direct

computation yields
9(x) — fo()

é(w;()) = @)

and thus

Ix(0) = E[{{(Y;0)}*] = E[{g(Y)/fo(Y) — 1}?]

=E[{s(Y)}?] = (G, Fy) = /(dG/dFO —1)*dF,.
Since s(x) = g(x)/ fo(x) — 1 is continuous and both g and fy have compact support, s(x) is
bounded. Hence Zx(0) < oo. O
C.1.6 Proof of Example 4.3.2

Proof of Example /.3.2. To verify Assumption 4.3.2 for the Farlie alternatives, we first prove
that GG is a bonafide joint distribution function. The corresponding density ¢ is given by

g(w1,29) = fi(wy) fa(w2)[1 + {1 = 2F1(z1) H{1 — 2F5(22) }],

which is a bonafide joint density function (Kossler and Rodel, 2007, Sec. 1.1.5). Then we

have
s(@) = g(x)/fo(x) — 1 ={1 = 2F1(z1) {1 — 2F>(22) }

and find that

E[s(Y)|Vi] = {1 - 2F,(Y})} x E{1 - 2F5(Y)} = 0
and  E[s(Y)|Va] = E{1 — 2F, (1)} x {1 — 2F5(Y3)} = 0.

The proof is completed. O
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C.1.7 Proof of Example 4.3.3

Proof of Example 4.3.3. We first verify that ¢ is a bonafide joint density function. First
since both h; and hs are bounded by 1,

lg(x)/ fo(x) — 1] = [hi(z1)ha(z1)| < 1,

and thus g(x) > 0. Then we write

g(w1,22) = fi(z1) fa(w2) + fi(x1)hi(21) f2(22) ha(22)

and

/_Z /_C: g(x1, x9)daydae = /Z fi(z1)dxy x /_Z fa(z2)dzs

-+ /OO fl(.il?l)hl(l'l)dl'l X /Oo fg(l‘g)hg(l’z)dl’g = 1,

where
/_ fl(l'l)h1<xl)d$1 < oo and /_ fQ(JIg)hQ(l’Q)dIQ =0

sinice (1), ha(z2) are bounded by 1 and fo(2s)ha(s) = — fa(—2)ha(—2»). We also have
E[S(Y)1¥i) = (1) x Bfta(V2)] = 1a(V) | folaz)halia)do =0,
and - E[S(Y)|Ye] = Elf(¥0)] % ha(V2) with Eln(¥)] = [ ulo)ha(o)de 2.
The proof is completed. O

C.1.8 Proof of Theorem 4.3.1(1)

Proof of Theorem 4.3.1(i). (A) This proof uses all of Assumption 4.3.1. Let Y; = (Y1;,Ya;),
i =1,...,n be independent copies of Y. Recall that fx(x;A) is the density of X with A.
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Denote

[x(z;A)
fx(z;0)
and define A, := Y "  log L(Y;; A,) and T, == A, >0, é(Y};O). These definitions make

L(z; A) = i ) 2= dog fx(: ),

sense by Assumption 4.3.1(1),(ii).

To employ a corollary to Le Cam’s third lemma, we wish to derive the joint limiting null
distribution of (—n'/2¢,/3,A,). Under the null hypothesis, it holds that Yap,..., Yoy, are
still independent and identically distributed, where [i] is such that Yip; < -+ < Yijp,. In
view of Angus (1995, Equation (9)), we have that under the null,

n—1

—-on!28, =n72Y " E 4 op(1), (C.1.4)

=1

where

= = [ B (Yapen) = B (Yo ) | + B (Voo ) {1 = B (Yoo }
2
= C.1.5
S (1)

LR, <y2m> {1 — R, <Y2H>} -

and Fy, is the cumulative distribution function for Y. One readily verifies |Z;| < 1.

Using (C.1.4), the limiting null distribution of (—n'/2¢,/3, A,,) will be the same as that
of (n=1/23"" =1, A,). To find the limiting null distribution of (n="/2 37" 2y, A,), using
the idea from Héjek and Sidak (1967, p. 210-214), we first find the limiting null distribution
of

n—1 n—1 n
(12320 L) = (12 S 220 S i(%0)
i=1 i=1 =1
_ (n_mz_m’ 1/2 AOZE 50 )
i=1

where Y;) = (Yip, Yop)). To employ the Cramér-Wold device, we aim to show that under
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the null, for any real numbers a and b,

n—1 n
an~1/? Z Ep) + b2 Z K(Y[z]a 0) ~ N<0: 2a° /45 + bQA(%IX(()))' (C.1.6)
i=1 i=1

The idea of the proof is to first show a conditional central limit result

n—1

anil/Q Z E[z] + bn71/2A0 Z g(lf[z], 0)
i=1

=1

YVit, oo Yin ~o N(O, 242 /45 + bQAng(O))
for almost every sequence Yiy,...,Yy,,..., (C.1.7)

and secondly deduce the desired unconditional central limit result.

To prove (C.1.7), we follow the idea put forward in the proof of Lemma 2.9.5 in van der
Vaart and Wellner (1996). According to the central limit theorem for 1-dependent random
variables (see, e.g., the Corollary in Orey, 1958, p. 546), the statement (C.1.7) is true if the

following conditions hold: for almost every sequence Yiy,...,Yi,, ...,
B (W) =0, (C.1.8)
1 . 2
—Ea{ z; Wig) } - 2%/45 + 1PA3Tx (0), (C.1.9)

n n 2y
; Es <Wﬁ]) /E2{ ( ZZI Wm) } is bounded, (C.1.10)

1 n
and — ZEQ{W[% X 1(n’1/2‘W[i] > e)} — 0 for every e > 0, (C.1.11)
n
i=1
where E, denotes the expectation conditionally on Yi4,...,Y,, and

Wy = aZp + bAgé(lfm;O) fori=1,...,n—1,

and - Wiy = bl (Yj;0). (C.1.12)

We verify conditions (C.1.8)—(C.1.11) as follows, starting from (C.1.8). Under the null
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hypothesis, conditionally on Yii,...,Y},, we have that Yoqy,..., Y, are still independent
and identically distributed as Y5, which implies that E4(Z};) = 0. We also deduce, by (C.1.3)
and Assumption 4.3.1(ii), that

E{é(Y; o) ‘YI} —0, (C.1.13)

and thus Eg{é(YW 0)} = 0. Then (C.1.8) follows by noticing that
Ey(Zp) =0 and Eo{/(Y;};0)} =0. (C.1.14)

For (C.1.9) and (C.1.10), we first claim that

n—1 n
COVQ{?”Lil/2 Z EM, n71/2A0 Z E(Ym, O)) } = O, (0115)
=1 i=1

where Covy denotes the covariance conditionally on Yiq, ..., Y7,. Recall that, under the null
hypothesis, Yo[1j, . . ., Y[, are still independent and identically distributed as Y3, conditionally
on Yi1,...,Y1,. We obtain

COVQ{ ’FY2 <Yz[i+1}> — Iy, (YQ[i]) 7é<Y[i+1]; 0) }

— Cov, [%{FYQ (Vagn) }2 + %{1 — By, (Yoo }2, {(Yjr0)) (C.1.16)

by taking expectation with respect to Ya;,

o |3 (01) 5 13} 1))
2

— Cov, [%{Fy (Yan) }2 + %{1 — B (Ya) | €(¥i0:0) (C.1.17)

by taking expectation with respect to Y11, and

Cova{| e (Vagen) = B (Y )| £(¥5:0) } =0 forall j 24, i1, (C.1.18)

since Yoy, Yo;41) are independent of Y with j # 4, ¢ + 1, conditionally on Yy,...,Y),.



Taking into account (C.1.16)—(C.1.18), it follows that
n—1 n
COVg{TL_l/Z ; E, n_l/QAo Z €<lf[i]> }
=703 o[ { P (va0) } o+ {1 P (va) ) f( 0)]
=2
n—1 1 )

+ZC0V2_§{FY2<Y2H>} +35 {1 Iy, (YQ[]
+ZCOVQ:FYQ<Y2[¢]>{1 Fy, <Y2[]>} (Y] 0}

:nl[icm{%,é(l’mﬂ)} §C°V2{% £(vs0) }]

where we notice that

oo (3500) < o S () ) =l (v:0)] <

for any given j. Then using (C.1.14)—(C.1.15) we can prove (C.1.9) as follows:

L)'} = Bffo s o X)) ]

_ %Ez :(GSEMY + {bAOXn:é(lf[i];()) }2}

i=1 =1
n—1

-l S i)

i=1 =1

e )

(11
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(C.1.19)

(C.1.20)
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— 2a*/45 + b’ AjZx (0), (C.1.21)

where the last step holds for almost all sequences Y71, ..., Yy,, ... by the law of large numbers.

To verify (C.1.10), recalling (C.1.5) and using (C.1.14),(C.1.17), we obtain
EQ{E[Z'] X Aof <Yv[i]; 0)} = COVQ{E[i], Aog (}Im; O)} = O,

and moreover,

(S mlfems i) < mffoniC)y )
(Srf(e=e)} e Sl (i) )
S peleeeol])

Hence we have, recalling (C.1.21),

ZE2<W[§])/E2{(ZWM>2} ~ 1. (C.1.22)
i=1 i=1
For proving (C.1.11), we recall that as given in (C.1.3)

€<Ym; 0) = —Ylm{pg (%m)} - Ym{pl (Ym}) } (C.1.23)

where pi(z) := fi.(2)/fr(z). The existence of finite second moments assumed in Assump-

tion 4.3.1(iii), E{(Y1)?} < oo and E[{p;(Y1)}?] < oo, implies that

P1 (Yl)

for almost all sequences Yiq,...,Yy,,... (Barndorff-Nielsen, 1963, Theorem 5.2). Since

172 —0 and max n /2 — 0 (C.1.24)

1<i<n

max n Yii

1<i<n
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12| < 1, we have

]l(n_l/2|Wm‘ > e) < ]l(|a|n_1/2 > e/3> + ]l{|b| X <1r£132x n_l/z’YM

) > |oa(¥20)| > 13}

w1 {1 x (e o (1)) % 1| > 13},

1<i<n

Then for every ¢ > 0,
1 n
—ZEQ{W[% X ]1(71’1/2 >6>}
n <
=1
1 & 9 2 2
< n Z;E2 (3 [a - {Yl[i] X P2 <Y2[i]>} + {Yzm X p1 (K[i})} ]

x [n(myn*l/? > 6/3) +11{|by ( ) X
xfi (gl 1)

Wi

Yii

()] > 73

) <[] = 5]

(C.1.25)

max n~ /2
I<i<n

1/2 }/2

max
1<i<n

Here in (C.1.25) we have by (C.1.24) and dominated convergence theorem that
LS B ool (a2 [1a) ¢ s (i) | > 73}
n 2 jpax P2\ Y2[i)

) < Jee ()| > /3] =0

Vi

= E, []l{‘b‘ X ( max n_l/Q‘Yu

1<i<n
where
]1{]b| X (1121;?( n~ 2|y, > X p2<Y21) > 6/3}] 250,
for almost all sequences Y1, ..., Y7,,.... We also have
3o ) ¢ 1 () (5] > 5)
n - 2 1[7] 2[i] 1<in i 2]

Yli

) x

= %i (Y1[z‘]>2E2 [{Pz (YQ[i]) }2 X ]l{]b| X <11’£1iag>1<1n’1/2 02 (YQM)‘ > 6/3}}



196

Yy

(Ylm)2> <E2 {r2(v21) }2 < 1{ bl x ( qnasx o2
<YM>2) (E2 [{r(12) }2 < t{jolx (o

B
) %

P2 <Y21>
P2 (Yzl)

- )
)

Vi,

Il
7 N\
S|~
1= 10M-

where for almost all sequences Yy, ..., Y1, ..

*

1 <& 2 2
a2 () ~E{() ]
n ; ( Lu) — 1
by the law of large numbers, and
2
el 02)) <1 () )

by (C.1.24) and the dominated convergence theorem. We can deduce similar convergences

Yi

> 6/3}] =0

for all the other summands in (C.1.25). Hence for almost all sequences Yiq,...,Yy,,..., all
conditions (C.1.8)—(C.1.11) are satisfied. This completes the proof of (C.1.7). Moreover, the
desired result (C.1.6) follows.

Finally, the Cramér—Wold device yields that under the null,

(mlﬂiz[i]jﬂ) - NQ((E)’ (2/045 A%I(;(O))) (C.1.26)

)

Furthermore, using ideas from Héjek and Sidak (1967, p. 210-214) (see also Gieser, 1993,
Appx. B), we have under the null,

A, — T, + A2Zx(0)/2 2 0,
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and thus under the null,

<n71/2 :1 E[i]’A”> N ((_Agzi(o) /2>’ (2/045 Agzi(())»’ (C.1.27)

and (—n'/2¢,/3, A,,) has the same limiting null distribution by (C.1.4). Finally, we employ a
corollary to Le Cam’s third lemma (van der Vaart, 1998, Example 6.7) to obtain that, under
the considered local alternative H,,(Ag) with any fixed Ay > 0, —n'/2¢,/3 ~ N(0,2/45),
and thus

n'2¢, ~ N(0,2/5). (C.1.28)
This completes the proof for family (A).

(B) This proof proceeds with only Assumption 4.3.2(1),(ii),(iv). Let Y; = (Y1, Ya),
i =1,...,n be independent copies of Y (distributed as X with A = 0). Denote

fx(@d) 5y 9 .
m; U(x; A) log fx (x; A),

L(x; A) = =
(w7 ) aA
and define A, :=>""  log L(Y;; A,) and T,, := A, > ", {(Y;;0). Direct computation yields

A U= NR@ ) ge) — le)
B e R ETR

and thus

Ix(0) = E[{{(Y;0)}*) = E[{g(Y)/fo(Y) — 1}7]

— E[{s(¥)}?] = / (AG/dFy — 1R,

Similar to the proof for family (A), we proceed to determine the limiting null distribution
of (—n'/2¢,/3, A,,). To this end, in view of the proof of Theorem 2 in Dhar et al. (2016), we
first find the limiting null distribution of (n~1/2 377} Zp» 1) The idea of deriving it is still

to first show (C.1.7), then (C.1.6), and thus (C.1.26).
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Next we verify conditions (C.1.8)—(C.1.11) for family (B). Notice that when we verify
conditions (C.1.8)—(C.1.10) for family (A) (from (C.1.14) to (C.1.22)), we only use that

(1) under the null hypothesis, Yap,...,Ys, are still independent and identically dis-
tributed as Y3, conditionally on Yiq,..., Yy,

(2) E{/(Y;0)[Y1} =0, and

(3) 0 < Zx(0) < oo.

The first property always holds under the null hypothesis. The latter two are assumed
or implied in Assumption 4.3.2(ii) and Assumption 4.3.2(i),(iv), respectively. Hence we
can verify conditions (C.1.8)—(C.1.10) for family (B) using the same arguments. The only
difference lies in proving (C.1.11). Since s(x) = g(x)/fo(x) — 1 is continuous and has
compact support, it is bounded by some constant, say C'; > 0. We have by definition of W/;
in (C.1.12),

(Wi < lal + [b]A¢Cs,

and thus
1 ol + G2

€

Wi

>e):O foralln>(

Then (C.1.11) follows by the dominated convergence theorem.
We have proven (C.1.26) for family (B). Furthermore, in the proof of Theorem 2 in Dhar
et al. (2016), they showed that under the null,

A, — T, + AXZx(0)/2 25 0. (C.1.29)

Thus under the null, we have (C.1.27) as well. The rest of the proof is to employ a corollary
to Le Cam’s third lemma (van der Vaart, 1998, Example 6.7) to obtain (C.1.28). O
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C.1.9 Proof of Theorem 4.53.1(ii)

Proof of Theorem 4.3.1(ii). (A) This proof uses all of Assumption 4.3.1. Let Y; = (Y1;, Ya;)
and X; = (Xy4, X9;), ¢ = 1,...,n be independent copies of Y and X, respectively. Here
X depends on n with A = A, = n"/2A,. Let F(© and F@ be the (joint) distribution

functions of (Y3,...,Y,) and (X1,...,X,), respectively. Denote

fx(@;A) 5 O .
m, g(.’B,A) . 10g fX(iB,A),

L(x; A) == =
(@) 2
and define A, := Y " log L(Y;; A,) and T, := A, > £(Y;;0). These definitions make

sense by Assumption 4.3.1(1),(ii).

In this proof we will consider the Hoeffding decomposition of u, under the null:

-3 (")1 > (mu) W (Vi You ) (Vi Yar) | (C130)
¢ 1<iy<--<ig<n ¢ B

where

/-1
hg(yla"wyf) = hlZ(yh“'?yZ)_Eh“_Z Z hll:(y2177ylk)7

k=1 1<i1 <<, <l

Ry(yr...,ye) =Eh*(y1..., 40, Yo, .., You), ER* :=Er(Y1,...,Yu),

and Y7, ..., Y, are m" independent copies of Y. Here h* is the “symmetrized” kernel and
m# is the order of the kernel function h* for u € {D, R, 7"} related to (4.2.5), (4.2.6), or
(4.2.7):

1 1
hD(y17‘-'7y5> = 5 Z n

1<iy#-#i5<5

H]l (yul < yns) -1 (ym < y1z~5> }{]1 (ylig, < yns) -1 (ym < yu;,) }]
H]l (ym’l < yz¢5> — 1<y2i2 < y21‘5> }{]1 <y2i3 < y2i5> — ]1<y2¢4 < y21‘5> }]7
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1 1
hR(yla'-'ayG) = a Z "

T 1<iy £ #ig<6

H]l (yul < y1¢5> — ]l<y1i2 < ylz‘5> }{]1 (ylig < y1i5> — ]l<y1i4 < y1i5> }]
H]l (?/ml < ?J2i6> — ﬂ<y2i2 < y2i6> }{]1 Yoig < ?J2i6> — ﬂ<y2i4 < y2i6> }]7

. 1
hT(yl,...,y4)Z:Z Z

D<A Fig <4

—
=

Y1iys Ylis < Yligy Y14y | + ﬂ<y1i2,y1¢4 < y1i17y1i3>

=

<y1i1, Yig < Yligs y1¢3> -1 (ylizyylig < Ytiy Z/m)}
{]1 <y2i1, Y2is < Y26y, y2i4> +1 <y2’i27 Y2is < Y2i1 yzi3>

—1 <y2i1ay2i4 < Y2iy, y2¢3> -1 <y212>y2i3 < Y2i1 5 Y2iy },

and m” =5, mf =6, m™ = 4. We will omit the superscript p in m*, h*, hf, 7@2‘, and H},
hereafter if no confusion is possible.

The proof is split into three steps. First, we prove that F(® is contiguous to F(©) in order
to employ Le Cam’s third lemma (van der Vaart, 1998, Theorem 6.6). Next, we find the
limiting null distribution of (nu,,A,). Lastly, we employ Le Cam’s third lemma to deduce
the alternative distribution of (nu,, A,).

Step I. In view of Gieser (1993, Sec. 3.2.1), Assumption 4.3.1 is sufficient for the conti-
guity: we have that F(® is contiguous to F(©.

Step II. Next we need to derive the limiting distribution of (ng,, A,) under null hypoth-
esis. To this end, we first derive the limiting null distribution of (nH, 2, A,), where H, - is
defined in (C.1.30). We write by the Fredholm theory of integral equations (Dunford and
Schwartz, 1963, pages 1009, 1083, 1087) that

1 oo
Hop = gy 0 2 Mt (Yie Yar ) (Vi Vi )
i#£j v=1
where {\,,v = 1,2,...} is an arrangement of {\,, ,,,v1,v2 = 1,2,...}, and ¢, is the nor-

malized eigenfunction associated with \,. For each positive integer K, define the “truncated”
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U-statistic as

Hop i i= (n =P S M (Vies Yai ) (i3, Ve ).

z;éjv 1

Notice that nH,, o and nH, > x can be written as

it = 2 (A (i)} = a3 (o () }])
ot = 2 (0[S () = oo 3 o (1))

For a simpler presentation, let S,,,, denote n~*/2 o y(Y1s, Ya;) hereafter.
To derive the limiting null distribution of (nH, 2, A, ), we first derive the limiting null

distribution of (nH, 2 k,T),) for each integer K. Observe that

E(Sny) =0, Var(S,,) =1, Cov(Snu Tn) = dyAo,
E(T,) =0, Var(7T,) =ZIx(0),

where d, := Cov{t,(Y),{(Y;0)} and 0 < Zx(0) < co by Assumption 4.3.1. There exists at
least one v > 1 such that d, # 0. Indeed, applying Theorem 4.4 and Lemma 4.2 in Nandy
et al. (2016) yields

{wv <:c>,’u =1,2,... } = {%ul <$1>¢zm <x2),v1,vg =1,2,... },
Y1, <x1)¢2v2 (xg) = 2cos {ﬂvlel (m1> } cos {WUQFYQ (.Z'Q) }

is associated with eigenvalue \*

where

defined in Proposition 4.2.4. Since

V1,02

3= i (1) =0

{ty(x),v = 1,2,...} forms a complete orthogonal basis for the family of functions of the
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form (C.1.3): d, = 0 for all v thus entails

Tx(0) = B{L'(Y;0)}? [{dev(yl,yg)} | = S =0,

which contradicts Assumption 4.3.1(iii). Therefore, d,~ # 0 for some v*. Applying the
multivariate central limit theorem (Bhattacharya and Ranga Rao, 1986, Equation (18.24)),

we deduce that under the null,

(Sn,la'-- SnK7 ) (617"'7€K7VK)7

0 I A
(517"'a§K7VK)NNK+l(( K);( K 01})).
0 Ao’l)T A(Q)I

Here Ox denotes a zero vector of dimension K, Ix denotes an identity matrix of dimension

where

K, T is short for Zx(0), and v = (dy,...,dk). Thus Vi can be expressed as

(820) (S e )
0 vSv 0,KS0 (>
v=1

where ¢, 1= Z7Y2d,, co i = (1 — fo:l )12 and & is standard Gaussian and independent

of &1,...,&k. Then by the continuous mapping theorem (van der Vaart, 1998, Theorem 2.3)
and Slutsky’s theorem (van der Vaart, 1998, Theorem 2.8), we have under the null,

(WHyo i, T (Z w(g 1), (adz) v ( i Cobs + cMgo)). (C.1.31)

Moreover, we claim that under the null,

(nH,2,Tp) (ZA ( ) (A(2)1>1/2<§:CU§U+CO,OO§O>), (C.1.32)

v=1
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with g = (1 — >0 ¢)¥/2 via the following argument. Denote

K e, K

M= (8- 1), Viei= (832) (X e + o).
1 v=1

MeYan(e-1) ad Ve (23) (Tt ant)

v=1 v=1

To prove (C.1.32), it suffices to prove that for any real numbers a and b,
‘E{ exp (iaan,g + ian>} - E{ exp (iaM + ibV)}‘ — 0 asn — oo, (C.1.33)

where i denotes the imaginary unit. We have

‘E{ exp (ianng + ian) } _ E{ exp (iaM + ibV) H
< ‘E{ exp (ianH,s + T, ) b~ B{ exp (ianHa + 0T, ) H
+ (E{ - (iaan,Q,K + ian> } - E{ - (iaMK n ibVK) }(
+ (E{ exp (iaMK n iva) } _ E{ exp (iaM + ibv) H — [+ I+, say,

where in view of page 82 of Lee (1990) and Equation (4.3.10) in Koroljuk and Borovskich
(1994),

I< E‘ exp {ion(Hnp — Hooxc) | - 1’ < {E‘an (Huz = Hoox)

and

I <E

2}1/2

exp {ia(MK _ M) + ib(VK — V>} — 1‘ < {E

00 S 1/2
< {2<2a2 Yoo Al Y (;2)} .

v=K+1 v=K+1

a(Mic = M) +b(Vic = V)
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Since by Remark 3.1 in Nandy et al. (2016),

1/8100 when u= D, R,

i)\iz and icﬁzI‘lidz:L
v=1 v=1 v=1

1/225  when u = 7%,

we conclude that, for any € > 0, there exists K such that I < ¢/3 and III < ¢/3 for all
n and all K > K,. For this K,, we have II < ¢/3 for all sufficiently large n by (C.1.31).
These together prove (C.1.33). We also have, using the idea from Héjek and Sidak (1967,
p. 210-214) (see also Gieser, 1993, Appendix B), that under the null

A, — T, +A27/2 25 0. (C.1.34)

Combining (C.1.32) and (C.1.34) yields that under the null,

(nHoz, A (D( ~1). (azz)” (zcw%&)_ﬁ_zf). (C.1.35)

Using the fact H,; = 0 and Equation (1.6.7) in Lee (1990, p. 30) yields that (nu,, A,) has
the same limiting distribution as (C.1.35) under the null.
Step III. Finally employing Le Cam’s third lemma (van der Vaart, 1998, Theorem 6.6)

P{np, < qi o | Hin(Ao)}
M) <0 (350) (S ) - 22
el £ (2B () (ot s )
-sfife] < ()"

(Aﬁz)uz (cv*&;* (1= )2 ) B AT}]
— @{ (qlfa +A§2°:1 Av)m — ey (Aﬁz) 1/2} - q){ B (qlfa +/\§j11 >\v>1/2 ( > }

51;*

(ql_a + D Av>1/2}

v*
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o0 1/2
S 2(Q1—a + Zv:l /\v> / QO{

o (ASI)W - (ql_a T2 A”)W}, (C.1.36)

Ao

Cy*
for some v* such that c,» = Z/2d,« # 0 and

Ay >

Cy*

-1 _ > A\ /2
I_l/z(ql ot D ) 7 (C.1.37)

Ao

where ® and ¢ are the distribution function and density function of the standard normal dis-
tribution, respectively. Note that the right-hand side of (C.1.36) is monotonically decreasing
as Ag increases given (C.1.37). There exists a positive constant Cz such that (C.1.36) is
smaller than /2 as long as Ay > Cj, regardless of whether ¢, is positive or negative. This
concludes the proof.

(B) This proof uses Assumption 4.3.2(i),(iii), (). Let Y; = (Y1;,Y2), i = 1,...,n be
independent copies of Y (distributed as X with A = 0). Denote

Ay dX@B) Ay O .
L(x; A) = @ 0) lx; A) = A log fx (x; A),
and define A, := Y27 log L(Y;; A,) and T), := A, 321 £(Y;;0). Direct computation yields
Ay LA folx) + Ag(e) 5 g(®) — fol®)
S 7 R (e

and thus

Ix(0) = B[{{(Y;0)}’] = E[{g(Y)/fo(Y) — 1}?]
— E[{s(Y)}] = / (dG/dFy — 1245,
This is similar to the proof for family (A). The only difference lies in proving the existence

of at least one v > 1 such that d, # 0, where d, := Cov[th,(Y),£(Y;0)]. Now {(z;0) = s(x)

is not of the form (C.1.3), and {¢,(x),v = 1,2,...} does not necessarily form a complete
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orthogonal basis for the family of functions of s(x). However, recall that

{wv<m>,v =1,2,... } = {1/11111 <$1>¢2v2 (932),1)1,”02 =1,2,... },

1o, (:1:1)1/1202 <x2) = 2cos {m;lel (SC1> } cos {7TU2FY2 (:1:2) }
{%vl <$1>¢2v2 (:L’z),vl,vz =0,1,2,... }

forms a complete orthogonal basis of the set of square integrable functions, d, = 0 for all

where

Since

v > 1 thus entails s(x) = hy(x1) + ho(z2) for some functions hy, he, where hg(zy) depends

only on xy for k = 1,2. This contradicts Assumption 4.3.2(iii). O

C.1.10 Proof of Proposition 4.3.1

Proof of Proposition 4.3.1. (A) This proof uses all of Assumption 4.53.1. Let Y; = (Y;, Ya;)
and X; = (Xy4,X9), @ = 1,...,n be independent copies of Y and X with A = A, =
n~2 A, respectively. Let F© and F® be the (joint) distribution functions of (Y, ...,Y})
and (X,...,X,), respectively, and let FZ-(O) and Fi(a) be the distribution functions of Y; and
X, respectively.

The total variation distance between two distribution functions G and F' on the same

real probability space is defined as
TV(G, F) := sup [P(4) — Pr(A)],
A

where A is taken over the Borel field and Pg, Pr are respective probability measures induced

by G and F. Furthermore, if G is absolutely continuous with respect to F', the Hellinger
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distance between GG and F' is defined as

HL(G, F) == [/2{1 - (dG/dF)l/Q}dF] v

By Assumption 4.3.1(i), HL(F(@ F©) is well-defined. It suffices to prove that for any small
0 < B < 1—aq, there exists Ay = cs such that, for all sufficiently large n, TV(F@, F©)) < 3,
which is implied by HL(F(@ F(©)) < 3 using the relation (Tsybakov, 2009, Equation (2.20))

TV (F(“), F<°>) < HL (F(“), F<0>>.

We also know that (Tsybakov, 2009, page 83)

1 L (F(“) F(O)> =11 {1 — lHL2< @ F.(O)> }
2 ’ 2 2t

1=

We then aim to evaluate HL*(F(® F©)) in terms of Zx (0) and Ag. By definition,
1 1/2
I (R ET) = B[ = {(vsa) ]

Given Assumption 4.3.1, we deduce in view of Gieser (1993, Appendix B) that

el (2(vin)) =S {a(8)) ) - 20

1=

Therefore,

1
1 - ZHL? (F(“), F(°)> = exp{ -

> AiZx(0) }

8
The desired result follows by taking cg > 0 such that

oo -}

(B) This proof requires Assumption 4.3.2(i),(iv). This is similar to the proof for family
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(A), but here we will use the relation (Tsybakov, 2009, Equation (2.27))

1/2

T\/(F(a)’F(U)) < {x2 (F(a>’F<o>>} 7

where the chi-square distance between two distribution functions G and F' on the same real

probability space such that G is absolutely continuous with respect to F' is defined as

XA(G, F) = / (dG/dF . 1>2dF.

Here \2(F@ F©) is well-defined by Assumption 4.3.2(i). We also know that (Tsybakov,
2009, page 86)

L2 (F, FO) = ﬁ{Hx( @ F)}

i=1
Next we aim to evaluate x*(F(@, F(©)) in terms of Tx(0) = x*(G, Fy) and Ay. Here 0 <
Zx(0) < oo by Assumption 4.3.2(i),(iv). We have by definition that

V(FYFO) =33 (1= A F + MG, o) = AN(G, Fy) = ADG (G, Fy).
Therefore, it holds that
1+x2 (F(“), F(0)> — exp {AgXQ <G, FO) }
The desired result follows by taking cg > 0 such that

exp {chz (G, Fg)} =1+ %2

This completes the proof. O



	List of Figures
	List of Tables
	Introduction
	High-dimensional consistent independence testing with maxima of rank correlations
	Introduction
	Rank correlations and degenerate U-statistics
	Maximum-type tests of mutual independence
	Theoretical analysis
	Simulation studies
	Discussion

	On universally consistent and fully distribution-free rank tests of vector independence
	Introduction
	Generalized symmetric covariances
	Center-outward ranks and signs
	Rank-based dependence measures
	Local power of rank-based tests of independence
	Conclusion

	On the power of Chatterjee's rank correlation
	Introduction
	Rank correlations and independence tests
	Local power analysis
	Rank correlations for discontinuous distributions
	Simulation results
	Discussion

	Appendix of Chapter 2
	Technical proofs
	More comments on *
	Additional simulation results

	Appendix of Chapter 3
	Proofs
	Auxiliary results

	Appendix of Chapter 4
	Proofs


